
Red Hat Enterprise Linux 8

Building, running, and managing containers

Building, running, and managing Linux containers on Red Hat Enterprise Linux 8

Last Updated: 2021-08-29

Red Hat Enterprise Linux 8 Building, running, and managing containers

Building, running, and managing Linux containers on Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to work with Linux containers on RHEL 8 systems using command-line
tools such as podman, buildah, skopeo and runc.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. STARTING WITH CONTAINERS
1.1. RUNNING CONTAINERS WITHOUT DOCKER
1.2. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS
1.3. GETTING CONTAINER TOOLS
1.4. SETTING UP ROOTLESS CONTAINERS
1.5. UPGRADING TO ROOTLESS CONTAINERS
1.6. SPECIAL CONSIDERATIONS FOR ROOTLESS CONTAINERS

CHAPTER 2. TYPES OF CONTAINER IMAGES
2.1. GENERAL CHARACTERISTICS OF RHEL CONTAINER IMAGES
2.2. CHARACTERISTICS OF UBI IMAGES
2.3. UNDERSTANDING THE UBI STANDARD IMAGES
2.4. UNDERSTANDING THE UBI INIT IMAGES
2.5. UNDERSTANDING THE UBI MINIMAL IMAGES
2.6. UNDERSTANDING THE UBI MICRO IMAGES
2.7. USING THE UBI INIT IMAGES
2.8. USING THE UBI MICRO IMAGES

CHAPTER 3. WORKING WITH CONTAINER IMAGES
3.1. CONFIGURING CONTAINER REGISTRIES
3.2. SEARCHING FOR CONTAINER IMAGES
3.3. PULLING IMAGES FROM REGISTRIES
3.4. PULLING AN IMAGE USING PODMAN
3.5. LISTING IMAGES
3.6. INSPECTING LOCAL IMAGES
3.7. INSPECTING REMOTE IMAGES
3.8. TAGGING IMAGES
3.9. SAVING AND LOADING IMAGES
3.10. REDISTRIBUTING UBI IMAGES
3.11. DEFINING THE IMAGE SIGNATURE VERIFICATION POLICY
3.12. REMOVING IMAGES

CHAPTER 4. WORKING WITH CONTAINERS
4.1. PODMAN RUN COMMAND
4.2. RUNNING COMMANDS IN A CONTAINER FROM THE HOST
4.3. RUNNING COMMANDS INSIDE THE CONTAINER
4.4. LISTING CONTAINERS
4.5. STARTING CONTAINERS
4.6. INSPECTING CONTAINERS FROM THE HOST
4.7. MOUNTING DIRECTORY ON LOCALHOST TO THE CONTAINER
4.8. MOUNTING A CONTAINER FILESYSTEM
4.9. RUNNING A SERVICE AS A DAEMON WITH A STATIC IP
4.10. EXECUTING COMMANDS INSIDE A RUNNING CONTAINER
4.11. SHARING FILES BETWEEN TWO CONTAINERS
4.12. EXPORTING AND IMPORTING CONTAINERS
4.13. STOPPING CONTAINERS
4.14. REMOVING CONTAINERS

5

6

7

8
8
9
9

10
11

12

14
14
14
15
15
16
17
17
18

20
20
21
21
22
23
23
24
24
26
26
27
30

32
32
32
33
34
35
36
37
37
38
39
40
42
44
45

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

CHAPTER 5. WORKING WITH PODS
5.1. CREATING PODS
5.2. DISPLAYING POD INFORMATION
5.3. STOPPING PODS
5.4. REMOVING PODS

CHAPTER 6. ADDING SOFTWARE TO A RUNNING UBI CONTAINER
6.1. ADDING SOFTWARE TO A UBI CONTAINER ON A SUBSCRIBED HOST
6.2. ADDING SOFTWARE IN A STANDARD UBI CONTAINER
6.3. ADDING SOFTWARE IN A MINIMAL UBI CONTAINER
6.4. ADDING SOFTWARE TO A UBI CONTAINER ON A UNSUBSCRIBED HOST
6.5. BUILDING UBI-BASED IMAGES
6.6. USING APPLICATION STREAM RUNTIME IMAGES
6.7. GETTING UBI CONTAINER IMAGE SOURCE CODE

CHAPTER 7. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER
7.1. RUNNING SKOPEO IN A CONTAINER
7.2. RUNNING SKOPEO IN A CONTAINER USING CREDENTIALS
7.3. RUNNING SKOPEO IN A CONTAINER USING AUTHFILES
7.4. COPYING CONTAINER IMAGES TO OR FROM THE HOST
7.5. RUNNING BUILDAH IN A CONTAINER
7.6. RUNNING PODMAN IN A CONTAINER

CHAPTER 8. RUNNING SPECIAL CONTAINER IMAGES
8.1. TROUBLESHOOTING CONTAINER HOSTS WITH TOOLBOX

8.1.1. Opening privileges to the host
8.2. RUNNING CONTAINERS WITH RUNLABELS

8.2.1. Running rsyslog with runlabels
8.2.2. Running support-tools with runlabels

CHAPTER 9. PORTING CONTAINERS TO OPENSHIFT USING PODMAN
9.1. GENERATING A KUBERNETES YAML FILE USING PODMAN
9.2. GENERATING A KUBERNETES YAML FILE IN OPENSHIFT ENVIRONMENT
9.3. STARTING CONTAINERS AND PODS WITH PODMAN
9.4. STARTING CONTAINERS AND PODS IN OPENSHIFT ENVIRONMENT

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN
10.1. ENABLING SYSTEMD SERVICES
10.2. GENERATING A SYSTEMD UNIT FILE USING PODMAN
10.3. AUTO-GENERATING A SYSTEMD UNIT FILE USING PODMAN
10.4. AUTO-STARTING CONTAINERS USING SYSTEMD
10.5. AUTO-STARTING PODS USING SYSTEMD
10.6. AUTO-UPDATING CONTAINERS USING PODMAN
10.7. AUTO-UPDATING CONTAINERS USING SYSTEMD

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH
11.1. THE BUILDAH TOOL
11.2. INSTALLING BUILDAH
11.3. GETTING IMAGES WITH BUILDAH
11.4. RUNNING COMMANDS INSIDE OF THE CONTAINER
11.5. BUILDING AN IMAGE FROM A DOCKERFILE WITH BUILDAH
11.6. INSPECTING CONTAINERS AND IMAGES WITH BUILDAH
11.7. MODIFYING A CONTAINER USING BUILDAH MOUNT
11.8. MODIFYING A CONTAINER USING BUILDAH COPY AND BUILDAH CONFIG
11.9. CREATING IMAGES FROM SCRATCH WITH BUILDAH

47
47
48
50
50

52
52
52
53
54
55
56
56

59
59
60
61

62
63
64

66
66
68
68
69
70

72
72
73
74
75

76
76
77
78
80
81

84
86

88
88
88
89
89
90
91

92
93
95

Red Hat Enterprise Linux 8 Building, running, and managing containers

2

. .

. .

. .

. .

11.10. PUSHING CONTAINERS TO A PRIVATE REGISTRY
11.11. PUSHING CONTAINERS TO THE DOCKER HUB
11.12. REMOVING IMAGES WITH BUILDAH
11.13. REMOVING CONTAINERS WITH BUILDAH

CHAPTER 12. MONITORING CONTAINERS
12.1. PERFORMING A HEALTHCHECK ON A CONTAINER
12.2. DISPLAYING PODMAN SYSTEM INFORMATION
12.3. PODMAN EVENT TYPES
12.4. MONITORING PODMAN EVENTS

CHAPTER 13. USING THE CONTAINER-TOOLS CLI
13.1. PODMAN

13.1.1. Using podman commands
13.1.2. Using the crun container runtime
13.1.3. Temporarily using crun as the container runtime
13.1.4. Permanently using crun as the container runtime
13.1.5. Creating SELinux policies for containers
13.1.6. Using podman with MPI
13.1.7. Creating and restoring container checkpoints

13.1.7.1. Creating and restoring a container checkpoint locally
13.1.7.2. Reducing startup time using container restore
13.1.7.3. Migrating containers among systems

13.2. RUNC
13.2.1. Running containers with runc

13.3. SKOPEO
13.3.1. Inspecting container images with skopeo
13.3.2. Copying container images with skopeo
13.3.3. Getting image layers with skopeo

CHAPTER 14. USING THE CONTAINER-TOOLS API
14.1. ENABLING THE PODMAN API USING SYSTEMD IN ROOT MODE
14.2. ENABLING THE PODMAN API USING SYSTEMD IN ROOTLESS MODE
14.3. RUNNING THE PODMAN API MANUALLY

CHAPTER 15. ADDITIONAL RESOURCES

96
97
98
99

100
100
101

104
106

107
107
107
109
109
110
111
111

113
113
115
116
117
117
118
119

120
120

121
121
122
123

126

Table of Contents

3

Red Hat Enterprise Linux 8 Building, running, and managing containers

4

PREFACE
Red Hat classifies container use cases into two distinct groups: single node and multi-node, with multi-
node sometimes called distributed systems. OpenShift was built to provide public, scalable deployments
of containerized applications. Beyond OpenShift, however, it is useful to have a small, nimble set of tools
for working with containers.

The set of container tools we are referring to can be used in a single-node use case. However, you can
also wire these tools into existing build systems, CI/CD environments, and even use them to tackle
workload-specific use cases, such as big data. To target the single-node use case, Red Hat Enterprise
Linux (RHEL) 8 offers a set of tools to find, run, build, and share individual containers.

This guide describes how to work with Linux containers on RHEL 8 systems using command-line tools
such as podman, buildah, skopeo and runc. In addition to these tools, Red Hat provides base images, to
act as the foundation for your own images. Some of these base images target use cases ranging from
business applications (such as Node.js, PHP, Java, and Python) to infrastructure (such as logging, data
collection, and authentication).

PREFACE

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 8 Building, running, and managing containers

6

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

CHAPTER 1. STARTING WITH CONTAINERS
Linux containers have emerged as a key open source application packaging and delivery technology,
combining lightweight application isolation with the flexibility of image-based deployment methods.
RHEL implements Linux containers using core technologies such as:

Control groups (cgroups) for resource management

Namespaces for process isolation

SELinux for security

Secure multi-tenancy

These technologies reduce the potential for security exploits and provides you with an environment for
producing and running enterprise-quality containers.

Red Hat OpenShift provides powerful command-line and Web UI tools for building, managing, and
running containers in units referred to as pods. Red Hat allows you to build and manage individual
containers and container images outside of OpenShift. This guide describes the tools provided to
perform those tasks that run directly on RHEL systems.

Unlike other container tools implementations, the tools described here do not center around the
monolithic Docker container engine and docker command. Instead, Red Hat provides a set of
command-line tools that can operate without a container engine. These include:

podman - for directly managing pods and container images (run, stop, start, ps, attach, exec,
and so on)

buildah - for building, pushing, and signing container images

skopeo - for copying, inspecting, deleting, and signing images

runc - for providing container run and build features to podman and buildah

crun - an optional runtime that can be configured and gives greater flexibility, control, and
security for rootless containers

Because these tools are compatible with the Open Container Initiative (OCI), they can be used to
manage the same Linux containers that are produced and managed by Docker and other OCI-
compatible container engines. However, they are especially suited to run directly on Red Hat Enterprise
Linux, in single-node use cases.

For a multi-node container platform, see OpenShift and Using the CRI-O Container Engine for details.

1.1. RUNNING CONTAINERS WITHOUT DOCKER

Red Hat removed the Docker container engine and the docker command from RHEL 8.

NOTE

Docker is not supported in RHEL 8.

The Podman, Skopeo, and Buildah tools were developed to replace Docker command features. Each
tool in this scenario is more lightweight and focused on a subset of features.

The main advantages of Podman, Skopeo and Buildah tools include:

Red Hat Enterprise Linux 8 Building, running, and managing containers

8

Running in rootless mode - rootless containers are much more secure, as they run without any
added privileges

No daemon required - these tools have much lower resource requirements at idle, since when
you are not running containers, Podman is not running versus having a daemon always running

Native systemd integration - Podman allows you to create systemd unit files and run containers
as system services

If you still want to use Docker in RHEL, you can get Docker from different upstream projects, but it is
unsupported in RHEL 8. Because so many Docker command-line features have been implemented in
Podman, you can set up an alias so that typing docker causes podman to run.

Installing the podman-docker package sets up this alias. As a result, every time you run a docker
command, it actually runs podman command.

Podman also supports the Docker Socket API, so the podman-docker package also sets up a link
between /var/run/docker.sock and /var/run/podman/podman.sock. As a result, you can continue to
run your Docker API commands with docker-py and docker-compose tools without requiring the
Docker daemon. Podman will service the requests.

1.2. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS

Red Hat provides container images and container-related software for the following computer
architectures:

AMD64 and Intel 64 (base and layered images; no support for 32-bit architectures)

PowerPC 8 and 9 64-bit (base image and most layered images)

64-bit IBM Z (base image and most layered images)

ARM 64-bit (base image only)

Although not all Red Hat images were supported across all architectures at first, nearly all are now
available on all listed architectures.

Additional resources

Universal Base Images (UBI): Images, repositories, and packages

1.3. GETTING CONTAINER TOOLS

This procedure shows how you can install the container-tools module which contains the Podman,
Buildah, Skopeo, and runc tools.

Procedure

1. Install RHEL.

2. Register RHEL: Enter your user name and password. The user name and password are the same
as your login credentials for Red Hat Customer Portal:

subscription-manager register
Registering to: subscription.rhsm.redhat.com:443/subscription

CHAPTER 1. STARTING WITH CONTAINERS

9

Username: ********
Password: **********

3. Subscribe to RHEL.

To auto-subscribe to RHEL:

subscription-manager attach --auto

To subscribe to RHEL by Pool ID:

subscription-manager attach --pool PoolID

4. Install the container-tools module:

yum module install -y container-tools

5. Optional: Install the podman-docker package:

yum install -y podman-docker

The podman-docker package replaces the Docker command-line interface and docker-api
with the matching Podman commands instead.

1.4. SETTING UP ROOTLESS CONTAINERS

Running the container tools such as Podman, Skopeo, or Buildah as a user with superuser privileges
(root user) is the best way to ensure that your containers have full access to any feature available on
your system. However, with the feature called "Rootless Containers" generally available as of RHEL 8.1,
you can work with containers as a regular user.

Although container engines, such as Docker, let you run Docker commands as a regular (non-root) user,
the Docker daemon that carries out those requests runs as root. As a result, regular users can make
requests through their containers that can harm the system. By setting up rootless container users,
system administrators prevent potentially damaging container activities from regular users, while still
allowing those users to safely run most container features under their own accounts.

This procedure describes how to set up your system to use Podman, Skopeo, and Buildah tools to work
with containers as a non-root user (rootless). It also describes some of the limitations you will encounter,
because regular user accounts do not have full access to all operating system features that their
containers might need to run.

Prerequisites

You need to become a root user to set up your RHEL system to allow non-root user accounts to
use container tools.

Procedure

1. Install RHEL.

2. Install the podman package:

yum install podman -y

Red Hat Enterprise Linux 8 Building, running, and managing containers

10

3. Create a new user account:

useradd -c "Joe Jones" joe
passwd joe

The user is automatically configured to be able to use rootless Podman. The useradd command
automatically sets the range of accessible user and group IDs automatically in the /etc/subuid
and /etc/subgid files.

4. Connect to the user:

$ ssh joe@server.example.com

NOTE

Do not use su or su - commands because these commands do not set the correct
environment variables. Use your Red Hat Customer Portal credentials.

5. Pull the registry.access.redhat.com/ubi8/ubi container image:

$ podman pull registry.access.redhat.com/ubi8/ubi

6. Run the container named myubi and display the OS version:

$ podman run --name=myubi registry.access.redhat.com/ubi8/ubi cat
 /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.4 (Ootpa)"

Additional resources

Rootless containers with Podman: The basics

1.5. UPGRADING TO ROOTLESS CONTAINERS

This section shows how to upgrade to rootless containers from RHEL 7. You must configure user and
group IDs manually.

Here are some things to consider when upgrading to rootless containers from RHEL 7:

If you set up multiple rootless container users, use unique ranges for each user.

Use 65536 UIDs and GIDs for maximum compatibility with existing container images, but the
number can be reduced.

Never use UIDs or GIDs under 1000 or reuse UIDs or GIDs from existing user accounts (which,
by default, start at 1000).

Prerequisites

The user account has been created.

Procedure

CHAPTER 1. STARTING WITH CONTAINERS

11

1. Run the usermod command to assign UIDs and GIDs to a user:

usermod --add-subuids 200000-201000 --add-subgids 200000-201000 username

The usermod --add-subuid command manually adds a range of accessible user IDs to the
user’s account.

The usermod --add-subgids command manually adds a range of accessible user GIDs and
group IDs to the user’s account.

2. Optional: Check that the UIDs and GIDs are set properly:

grep username /etc/subuid /etc/subgid
#/etc/subuid:username:200000:1001
#/etc/subgid:username:200000:1001

1.6. SPECIAL CONSIDERATIONS FOR ROOTLESS CONTAINERS

There are several considerations when running containers as a non-root user:

The path to the host container storage is different for root users (/var/lib/containers/storage)
and non-root users ($HOME/.local/share/containers/storage).

Users running rootless containers are given special permission to run as a range of user and
group IDs on the host system. However, they have no root privileges to the operating system on
the host.

If you need to configure your rootless container environment, create configuration files in your
home directory ($HOME/.config/containers). Configuration files include storage.conf (for
configuring storage) and containers.conf (for a variety of container settings). You could also
create a registries.conf file to identify container registries that are available when you use
Podman to pull, search, or run images.

There are some system features you cannot change without root privileges. For example, you
cannot change the system clock by setting a SYS_TIME capability inside a container and
running the network time service (ntpd). You have to run that container as root, bypassing your
rootless container environment and using the root user’s environment. For example:

$ sudo podman run -d --cap-add SYS_TIME ntpd

Note that this example allows ntpd to adjust time for the entire system, and not just within the
container.

A rootless container cannot access a port numbered less than 1024. Inside the rootless
container namespace it can, for example, start a service that exposes port 80 from an httpd
service from the container, but it is not accessible outside of the namespace:

$ podman run -d httpd

However, a container would need root privileges, using the root user’s container environment, to
expose that port to the host system:

$ sudo podman run -d -p 80:80 httpd

The administrator of a workstation can allow users to expose services on ports numbered lower

Red Hat Enterprise Linux 8 Building, running, and managing containers

12

The administrator of a workstation can allow users to expose services on ports numbered lower
than 1024, but they should understand the security implications. A regular user could, for
example, run a web server on the official port 80 and make external users believe that it was
configured by the administrator. This is acceptable on a workstation for testing, but might not
be a good idea on a network-accessible development server, and definitely should not be done
on production servers. To allow users to bind to ports down to port 80 run the following
command:

echo 80 > /proc/sys/net/ipv4/ip_unprivileged_port_start

Additional resources

Shortcomings of Rootless Podman

CHAPTER 1. STARTING WITH CONTAINERS

13

CHAPTER 2. TYPES OF CONTAINER IMAGES
The container image is a binary that includes all of the requirements for running a single container, and
metadata describing its needs and capabilities.

There are two types of container images:

Red Hat Enterprise Linux Base Images (RHEL base images)

Red Hat Universal Base Images (UBI images)

Both types of container images are built from portions of Red Hat Enterprise Linux. By using these
containers, users can benefit from great reliability, security, performance and life cycles.

The main difference between the two types of container images is that the UBI images allow you to
share container images with others. You can build a containerized application using UBI, push it to your
choice of registry server, easily share it with others, and even deploy it on non-Red Hat platforms. The
UBI images are designed to be a foundation for cloud-native and web applications use cases developed
in containers.

2.1. GENERAL CHARACTERISTICS OF RHEL CONTAINER IMAGES

Following characteristics apply to both RHEL base images and UBI images.

In general, RHEL container images are:

Supported: Supported by Red Hat for use with containerized applications. They contain the
same secured, tested, and certified software packages found in Red Hat Enterprise Linux.

Cataloged: Listed in the Red Hat Container Catalog , with descriptions, technical details, and a
health index for each image.

Updated: Offered with a well-defined update schedule, to get the latest software, see Red Hat
Container Image Updates article.

Tracked: Tracked by Red Hat Product Errata to help understand the changes that are added
into each update.

Reusable: The container images need to be downloaded and cached in your production
environment once. Each container image can be reused by all containers that include it as their
foundation.

2.2. CHARACTERISTICS OF UBI IMAGES

The UBI images allow you to share container images with others. Four UBI images are offered: micro,
minimal, standard, and init. Pre-build language runtime images and YUM repositories are available to
build your applications.

Following characteristics apply to UBI images:

Built from a subset of RHEL content: Red Hat Universal Base images are built from a subset of
normal Red Hat Enterprise Linux content.

Redistributable: UBI images allow standardization for Red Hat customers, partners, ISVs, and
others. With UBI images, you can build your container images on a foundation of official Red Hat
software that can be freely shared and deployed.

Red Hat Enterprise Linux 8 Building, running, and managing containers

14

Provides a set of four base images: micro, minimal, standard, and init.

Provides a set of pre-built language runtime container images: The runtime images based on
Application Streams provide a foundation for applications that can benefit from standard,
supported runtimes such as python, perl, php, dotnet, nodejs, and ruby.

Provides a set of associated YUM repositories: YUM repositories include RPM packages and
updates that allow you to add application dependencies and rebuild UBI container images.

The ubi-8-baseos repository holds the redistributable subset of RHEL packages you can
include in your container.

The ubi-8-appstream repository holds Application streams packages that you can add to a
UBI image to help you standardize the environments you use with applications that require
particular runtimes.

Adding UBI RPMs: You can add RPM packages to UBI images from preconfigured UBI
repositories. If you happen to be in a disconnected environment, you must allowlist the UBI
Content Delivery Network (https://cdn-ubi.redhat.com) to use that feature. See the
Connect to https://cdn-ubi.redhat.com solution for details.

Licensing: You are free to use and redistribute UBI images, provided you adhere to the Red Hat
Universal Base Image End User Licensing Agreement.

Additional resources

Introducing the Red Hat Universal Base Image

Universal Base Images (UBI): Images, repositories, and packages

All You Need to Know About Red Hat Universal Base Image

FAQ - Universal Base Images

2.3. UNDERSTANDING THE UBI STANDARD IMAGES

The standard images (named ubi) are designed for any application that runs on RHEL. The key features
of UBI standard images include:

init system: All the features of the systemd initialization system you need to manage systemd
services are available in the standard base images. These init systems let you install RPM
packages that are pre-configured to start up services automatically, such as a Web server
(httpd) or FTP server (vsftpd).

yum: You have access to free yum repositories for adding and updating software. You can use
the standard set of yum commands (yum, yum-config-manager, yumdownloader, and so on).

utilities: Utilities include tar, dmidecode, gzip, getfacl and further acl commands, dmsetup and
further device mapper commands, between other utilities not mentioned here.

2.4. UNDERSTANDING THE UBI INIT IMAGES

The UBI init images, named ubi-init, contain the systemd initialization system, making them useful for
building images in which you want to run systemd services, such as a web server or file server. The init
image contents are less than what you get with the standard images, but more than what is in the
minimal images.

CHAPTER 2. TYPES OF CONTAINER IMAGES

15

NOTE

Because the ubi8-init image builds on top of the ubi8 image, their contents are mostly
the same. However, there are a few critical differences:

ubi8-init:

CMD is set to /sbin/init to start the systemd Init service by default

includes ps and process related commands (procps-ng package)

sets SIGRTMIN+3 as the StopSignal, as systemd in ubi8-init ignores normal
signals to exit (SIGTERM and SIGKILL), but will terminate if it receives
SIGRTMIN+3

ubi8:

CMD is set to /bin/bash

does not include ps and process related commands (procps-ng package)

does not ignore normal signals to exit (SIGTERM and SIGKILL)

2.5. UNDERSTANDING THE UBI MINIMAL IMAGES

The UBI minimal images, named ubi-minimal offer a minimized pre-installed content set and a package
manager (microdnf). As a result, you can use a Dockerfile or Containerfile while minimizing the
dependencies included in the image.

The key features of UBI minimal images include:

Small size: Minimal images are about 92M on disk and 32M, when compressed. This makes it less
than half the size of the standard images.

Software installation (microdnf): Instead of including the fully-developed yum facility for
working with software repositories and RPM software packages, the minimal images includes
the microdnf utility. The microdnf is a scaled-down version of dnf allowing you to enable and
disable repositories, remove and update packages, and clean out cache after packages have
been installed.

Based on RHEL packaging: Minimal images incorporate regular RHEL software RPM packages,
with a few features removed. Minimal images do not include initialization and service
management system, such as systemd or System V init, Python run-time environment, and
some shell utilities. You can rely on RHEL repositories for building your images, while carrying
the smallest possible amount of overhead.

Modules for microdnf are supported: Modules used with microdnf command let you install
multiple versions of the same software, when available. You can use microdnf module enable,
microdnf module disable, and microdnf module reset to enable, disable, and reset a module
stream, respectively.

For example, to enable the nodejs:14 module stream inside the UBI minimal container,
enter:

microdnf module enable nodejs:14
Downloading metadata...
...

Red Hat Enterprise Linux 8 Building, running, and managing containers

16

Enabling module streams:
 nodejs:14

Running transaction test...

Red Hat only supports the latest version of UBI and does not support parking on a dot release. If you
need to park on a specific dot release, please take a look at Extended Update Support.

2.6. UNDERSTANDING THE UBI MICRO IMAGES

The ubi-micro is the smallest possible UBI image, obtained by excluding a package manager and all of
its dependencies which are normally included in a container image. This minimizes the attack surface of
container images based on the ubi-micro image and is suitable for minimal applications, even if you use
UBI Standard, Minimal, or Init for other applications. The container image without the Linux distribution
packaging is called a Distroless container image.

2.7. USING THE UBI INIT IMAGES

This procedure shows how to build a container using a Containerfile that installs and configures a Web
server (httpd) to start automatically by the systemd service (/sbin/init) when the container is run on a
host system. The podman build command uses a Containerfile if found in the context directory, if it is
not found the podman build command will use a Dockerfile; otherwise any file can be specified with
the --file option. The available commands that are usable inside a Containerfile and a Dockerfile are
equivalent.

Procedure

1. Create a Containerfile with the following contents to a new directory:

FROM registry.access.redhat.com/ubi8/ubi-init
RUN yum -y install httpd; yum clean all; systemctl enable httpd;
RUN echo "Successful Web Server Test" > /var/www/html/index.html
RUN mkdir /etc/systemd/system/httpd.service.d/; echo -e '[Service]\nRestart=always' >
/etc/systemd/system/httpd.service.d/httpd.conf
EXPOSE 80
CMD ["/sbin/init"]

The Containerfile installs the httpd package, enables the httpd service to start at boot time,
creates a test file (index.html), exposes the Web server to the host (port 80), and starts the
systemd init service (/sbin/init) when the container starts.

2. Build the container:

podman build --format=docker -t mysysd .

3. Optional. If you want to run containers with systemd and SELinux is enabled on your system, you
must set the container_manage_cgroup boolean variable:

setsebool -P container_manage_cgroup 1

4. Run the container named mysysd_run:

podman run -d --name=mysysd_run -p 80:80 mysysd

CHAPTER 2. TYPES OF CONTAINER IMAGES

17

The mysysd image runs as the mysysd_run container as a daemon process, with port 80 from
the container exposed to port 80 on the host system.

NOTE

In rootless mode, you have to choose host port number >= 1024. For example:

$ podman run -d --name=mysysd -p 8081:80 mysysd

To use port numbers < 1024, you have to modify the net.ipv4.ip_unprivileged_port_start
variable:

$ sudo sysctl net.ipv4.ip_unprivileged_port_start=80

5. Check that the container is running:

podman ps
a282b0c2ad3d localhost/mysysd:latest /sbin/init 15 seconds ago Up 14 seconds ago
0.0.0.0:80->80/tcp mysysd_run

6. Test the web server:

curl localhost/index.html
Successful Web Server Test

Additional resources

Shortcomings of Rootless Podman

2.8. USING THE UBI MICRO IMAGES

This procedure shows how to build a ubi-micro container image using the Buildah tool.

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

Procedure

1. Pull and build the registry.access.redhat.com/ubi8/ubi-micro image:

microcontainer=$(buildah from registry.access.redhat.com/ubi8/ubi-micro)

2. Mount a working container root filesystem:

micromount=$(buildah mount $microcontainer)

3. Install the httpd service to the micromount directory:

yum install \

Red Hat Enterprise Linux 8 Building, running, and managing containers

18

 --installroot $micromount \
 --releasever 8 \
 --setopt install_weak_deps=false \
 --nodocs -y \
 httpd
yum clean all \
 --installroot $micromount

4. Unmount the root file system on the working container:

buildah umount $microcontainer

5. Create the ubi-micro-httpd image from a working container:

buildah commit $microcontainer ubi-micro-httpd

Verification steps

1. Display details about the ubi-micro-httpd image:

podman images ubi-micro-httpd
localhost/ubi-micro-httpd latest 7c557e7fbe9f 22 minutes ago 151 MB

CHAPTER 2. TYPES OF CONTAINER IMAGES

19

CHAPTER 3. WORKING WITH CONTAINER IMAGES
This explains how to work with container images. How to pull the image, inspect, tag, save, load,
redistribute, define the image signature.

3.1. CONFIGURING CONTAINER REGISTRIES

Using the podman search command you can search selected container registries for images. You can
also search for images in the Red Hat Container Registry . The Red Hat Container Registry includes the
image description, contents, health index, and other information.

You can find the list of registries in the configuration file registries.conf. As a root user, edit the
/etc/containers/registries.conf file to change the default, system-wide search settings.

As a user create the $HOME/.config/containers/registries.conf file to override the system-wide
settings.

[registries.search]
registries = ['registry.access.redhat.com', 'registry.redhat.io', 'docker.io']

[registries.insecure]
registries = []

[registries.block]
registries = []

By default, the podman search command searches for container images from registries listed
in the [registries.search] section in the given order. In this case, the command searches the
requested image in registry.access.redhat.com, registry.redhat.io, and docker.io in this
order.

The [registries.insecure] section defines registries that do not use TLS encryption for the
communication with the registry, what makes them insecure.

The [registries.block] section defines registries the local system is not allowed to access.

Make sure that you follow the conditions when configuring container registries:

Each registry must be surrounded by single quotes.

If there are multiple registries set for the registries = key, you must separate those registries by
commas.

You can identify registries by either IP address or host name.

If the registry uses a non-standard port - other than the TCP ports 443 for encrypted and 80 for
unencrypted connections, enter that port number with the registry name. For example:
host.example.com:9999.

The system searches for registries in the order in which they appear in the registries.search list.

To access insecure registries, add the fully-qualified name (FQDN) of the registry to the
[registries.insecure] section of the /etc/containers/registries.conf file. For example:

Red Hat Enterprise Linux 8 Building, running, and managing containers

20

[registries.insecure]
registries = ['insecure-registry.example.com']

3.2. SEARCHING FOR CONTAINER IMAGES

This section explains how to search for the postresql-10 images in the quay.io registry.

Prerequisites

The registry is configured.

Procedure

1. Authenticate to the registry:

podman login quay.io

2. Search for the image:

To search for a particular image on a specific registry, enter:

podman search quay.io/postgresql-10
INDEX NAME DESCRIPTION STARS OFFICIAL
AUTOMATED
redhat.io registry.redhat.io/rhel8/postgresql-10 This container image ... 0
redhat.io registry.redhat.io/rhscl/postgresql-10-rhel7 PostgreSQL is an ... 0

Alternatively, to display all images provided by a particular registry, enter:

podman search quay.io/

To search for the image name in all registries, enter:

podman search postgresql-10

To display the full descriptions, pass the --no-trunc option to the command.

3.3. PULLING IMAGES FROM REGISTRIES

To get container images from a remote registry, such as Red Hat’s own container registry, and add them
to your local system, use the podman pull command:

podman pull <registry>[:<port>]/[<namespace>/]<name>:<tag>

For example, the registry.redhat.io/ubi8/ubi container image is identified by:

Registry server (registry.redhat.io)

Namespace (ubi8)

Image name (ubi)

If there are multiple versions of the same image, add a tag to explicitly specify the image name. By

CHAPTER 3. WORKING WITH CONTAINER IMAGES

21

If there are multiple versions of the same image, add a tag to explicitly specify the image name. By
default, podman uses :latest, for example ubi8/ubi:latest.

Procedure

1. Log in to the registry.redhat.io registry:

$ podman login registry.redhat.io
Username: username
Password: **********
Login Succeeded!

2. Pull the registry.redhat.io/ubi8/ubi container image:

$ podman pull registry.redhat.io/ubi8/ubi

Verification steps

To list all images pulled to your local system:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi8/ubi latest 3269c37eae33 7 weeks ago 208 MB

3.4. PULLING AN IMAGE USING PODMAN

Always use fully qualified image names including registry, namespace, image name, and tag. When using
short names, there is always an inherent risk of spoofing. Add registries that are trusted, that is, registries
that do not allow unknown or anonymous users to create accounts with arbitrary names.

For example, a user wants to pull the example container image from example.registry.com registry. If
example.registry.com is not first in the search list, an attacker could place a different example image
at a registry earlier in the search list. The user would accidentally pull and run the attacker image rather
than the intended content.

Some registries also support raw <name>; for those, <namespace> is optional. When it is included,
however, the additional level of hierarchy that <namespace> provides is useful to distinguish between
images with the same <name>. For example:

Namespace Examples (<namespace>/<name>)

organization redhat/kubernetes, google/kubernetes

login (user name) alice/application, bob/application

role devel/database, test/database, prod/database

The registries that Red Hat provides are:

registry.redhat.io (requiring authentication)

Red Hat Enterprise Linux 8 Building, running, and managing containers

22

registry.access.redhat.com (requires no authentication)

registry.connect.redhat.com (holds Red Hat Partner Connect program images)

For details on the transition to registry.redhat.io, see Red Hat Container Registry Authentication .
Before you can pull containers from registry.redhat.io, you need to authenticate using your RHEL
Subscription credentials.

3.5. LISTING IMAGES

Use the podman images command to list images in your local storage.

Prerequisites

A pulled image is available on the local system.

Procedure

List all images in the local storage:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest 3269c37eae33 6 weeks ago 208 MB

3.6. INSPECTING LOCAL IMAGES

After you pull an image to your local system and run it, you can use the podman inspect command to
investigate the image. For example, use it to understand what the image does and check what software
is inside the image. The podman inspect command displays information on containers and images
identified by name or ID.

Prerequisites

A pulled image is available on the local system.

Procedure

Inspect the registry.redhat.io/ubi8/ubi image:

$ podman inspect registry.redhat.io/ubi8/ubi
…
 "Cmd": [
 "/bin/bash"
],
 "Labels": {
 "architecture": "x86_64",
 "build-date": "2020-12-10T01:59:40.343735",
 "com.redhat.build-host": "cpt-1002.osbs.prod.upshift.rdu2.redhat.com",
 "com.redhat.component": "ubi8-container",
 "com.redhat.license_terms": "https://www.redhat.com/...,
 "description": "The Universal Base Image is ...
 }
...

The "Cmd" key specifies a default command to run within a container. You can override this

CHAPTER 3. WORKING WITH CONTAINER IMAGES

23

The "Cmd" key specifies a default command to run within a container. You can override this
command by specifying a command as an argument to the podman run command. This
ubi8/ubi container will execute the bash shell, if no other argument is given when you start it
with podman run. If an "Entrypoint" key was set, its value would be used instead of the "Cmd"
value, and the value of "Cmd" is used as an argument to the Entrypoint command.

3.7. INSPECTING REMOTE IMAGES

Use skopeo inspect to display information about an image from a remote container registry before you
pull the image to your system.

Procedure

1. Inspect the registry.redhat.io/ubi8/ubi-init image:

skopeo inspect docker://registry.redhat.io/ubi8/ubi-init
{
 "Name": "registry.redhat.io/ubi8/ubi8-init",
 "Digest": "sha256:c6d1e50ab...",
 "RepoTags": [
 "8.2-13-source",
 "8.0-15",
 "8.1-28",
 ...
 "latest"
],
 "Created": "2020-12-10T07:16:37.250312Z",
 "DockerVersion": "1.13.1",
 "Labels": {
 "architecture": "x86_64",
 "build-date": "2020-12-10T07:16:11.378348",
 "com.redhat.build-host": "cpt-1007.osbs.prod.upshift.rdu2.redhat.com",
 "com.redhat.component": "ubi8-init-container",
 "com.redhat.license_terms": "https://www.redhat.com/en/about/red-hat-end-user-
license-agreements#UBI",
 "description": "The Universal Base Image Init is designed to run an init system as PID 1
for running multi-services inside a container
 ...

3.8. TAGGING IMAGES

Use the podman tag command to add an additional name to a local image. This additional name can
consist of several parts: registryhost/username/NAME:tag.

Prerequisites

A pulled image is available on the local system.

Procedure

1. List all images:

Red Hat Enterprise Linux 8 Building, running, and managing containers

24

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi8/ubi latest 3269c37eae33 7 weeks ago 208 MB

2. Assign the myubi name to the registry.redhat.io/ubi8/ubi image using either:

The image name:

$ podman tag registry.redhat.io/ubi8/ubi myubi

The image ID:

$ podman tag 3269c37eae33 myubi

Both commands give you the same result.

3. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi8/ubi latest 3269c37eae33 2 months ago 208 MB
localhost/myubi latest 3269c37eae33 2 months ago 208 MB

Notice that the default tag is latest for both images. You can see all the image names are
assigned to the single image ID 3269c37eae33.

4. Add the 8.4 tag to the registry.redhat.io/ubi8/ubi image using either:

The image name:

$ podman tag registry.redhat.io/ubi8/ubi myubi:8.4

The image ID:

$ podman tag 3269c37eae33 myubi:8.4

Both commands give you the same result.

5. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi8/ubi latest 3269c37eae33 2 months ago 208 MB
localhost/myubi latest 3269c37eae33 2 months ago 208 MB
localhost/myubi 8.4 3269c37eae33 2 months ago 208 MB

Notice that the default tag is latest for both images. You can see all the image names are
assigned to the single image ID 3269c37eae33.

After tagging the registry.redhat.io/ubi8/ubi image, you have three options to run the container:

by ID (3269c37eae33)

by name (localhost/myubi:latest)

CHAPTER 3. WORKING WITH CONTAINER IMAGES

25

by name (localhost/myubi:8.4)

3.9. SAVING AND LOADING IMAGES

Use the podman save command to save an image to a container archive. You can restore it later to
another container environment or send it to someone else. You can use --format option to specify the
archive format. The supported formats are:

docker-archive

oci-archive

oci-dir (directory with oci manifest type)

docker-dir (directory with v2s2 manifest type)

The default format is the docker-dir format.

Use the podman load command to load an image from the container image archive into the container
storage.

Prerequisites

A pulled image is available on the local system.

Procedure

1. Save the registry.redhat.io/rhel8/rsyslog image as a tarball:

In the default docker-dir format:

$ podman save -o myrsyslog.tar registry.redhat.io/rhel8/rsyslog:latest

In the oci-archive format, using the --format option:

$ podman save -o myrsyslog-oci.tar --format=oci-archive registry.redhat.io/rhel8/rsyslog

The myrsyslog.tar and myrsyslog-oci.tar archives are stored in your current directory. The
next steps are performed with the myrsyslog.tar tarball.

2. Check the file type of myrsyslog.tar:

$ file myrsyslog.tar
myrsyslog.tar: POSIX tar archive

3. To load the registry.redhat.io/rhel8/rsyslog:latest image from the myrsyslog.tar:

$ podman load -i myrsyslog.tar
...
Loaded image(s): registry.redhat.io/rhel8/rsyslog:latest

3.10. REDISTRIBUTING UBI IMAGES

Use podman push command to push a UBI image to your own, or a third party, registry and share it with

Red Hat Enterprise Linux 8 Building, running, and managing containers

26

Use podman push command to push a UBI image to your own, or a third party, registry and share it with
others. You can upgrade or add to that image from UBI yum repositories as you like.

Prerequisites

A pulled image is available on the local system.

Procedure

1. Optional: Add an additional name to the ubi image:

podman tag registry.redhat.io/ubi8/ubi registry.example.com:5000/ubi8/ubi

2. Push the registry.example.com:5000/ubi8/ubi image from your local storage to a registry:

podman push registry.example.com:5000/ubi8/ubi

IMPORTANT

While there are few restrictions on how you use these images, there are some restrictions
about how you can refer to them. For example, you cannot call those images Red Hat
certified or Red Hat supported unless you certify it through the Red Hat Partner Connect
Program, either with Red Hat Container Certification or Red Hat OpenShift Operator
Certification.

3.11. DEFINING THE IMAGE SIGNATURE VERIFICATION POLICY

Red Hat delivers signatures for the images in the Red Hat Container Registry. The YAML files in the
/etc/containers/registries.d/ directory and the /etc/containers/policy.json file define the signature
verification policy when running as root.

The trust policy in the /etc/containers/policy.json file describes a registry scope (registry and or or
repository) for the trust.

By default, the container tool reads the policy from the $HOME/.config/containers/policy.json file if it
exists. Otherwise, the container tool reads the policy from the /etc/containers/policy.json file.

Trust is defined using three parameters:

1. The registry or registry/repository name

2. One or more public GPG keys

3. A signature server

Red Hat distributes signatures from these URIs:

https://access.redhat.com/webassets/docker/content/sigstore

https://registry.redhat.io/containers/sigstore

Procedure

1. Display the /etc/containers/policy.json file:

cat /etc/containers/policy.json

CHAPTER 3. WORKING WITH CONTAINER IMAGES

27

{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "transports":
 {
 "docker-daemon":
 {
 "": [{"type":"insecureAcceptAnything"}]
 }
 }
}

2. To update an existing trust scope for the registries registry.access.redhat.com and
registry.redhat.io, enter:

podman image trust set -f /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
registry.access.redhat.com
podman image trust set -f /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
registry.redhat.io

3. To verify trust policy configuration, display the /etc/containers/policy.json file:

 "docker": {
 "registry.access.redhat.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
],
 "registry.redhat.io": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
]
 },

You can see that sections "registry.access.redhat.com" and "registry.redhat.io" are added.

4. Create the /etc/containers/registries.d/registry.access.redhat.com.yaml file with the
following content to identify the signature store for container images from the
registry.access.redhat.com registry:

docker:
 registry.access.redhat.com:
 sigstore: https://access.redhat.com/webassets/docker/content/sigstore

5. Create the etc/containers/registries.d/registry.redhat.io.yaml file with the following content:

Red Hat Enterprise Linux 8 Building, running, and managing containers

28

docker:
 registry.redhat.io:
 sigstore: https://registry.redhat.io/containers/sigstore

6. To display the trust configuration, enter:

podman image trust show default accept
registry.access.redhat.com signedBy security@redhat.com, security@redhat.com
https://access.redhat.com/webassets/docker/content/sigstore
registry.redhat.io signedBy security@redhat.com, security@redhat.com
https://registry.redhat.io/containers/sigstore
 insecureAcceptAnything

7. To reject the default trust policy, type:

podman image trust set -t reject default

8. To verify the trust policy configuration, display the /etc/containers/policy.json file:

cat /etc/containers/policy.json
{
 "default": [
 {
 "type": "reject"
 }
...
}

You can see that the "default" section has changed from "insecureAcceptAnything" to
"reject".

9. Pull the minimal Red Hat Universal Base Image 8 (ubi8-minimal) image from the
registry.access.redhat.com registry:

podman --log-level=debug pull registry.access.redhat.com/ubi8-minimal
....
DEBU[0000] Using registries.d directory /etc/containers/registries.d for sigstore configuration
DEBU[0000] Using "docker" namespace registry.access.redhat.com
DEBU[0000] Using https://access.redhat.com/webassets/docker/content/sigstore
...

You see that the signature storage address
access.redhat.com/webassets/docker/content/sigstore matches the address you specified in
the /etc/containers/registries.d/registry.access.redhat.com.yaml.

10. Log in to the registry.redhat.io registry:

podman login registry.redhat.io
Username: username
Password: ***********
Login Succeeded!

11. Pull the support-tools image from the registry.redhat.io registry:

CHAPTER 3. WORKING WITH CONTAINER IMAGES

29

podman --log-level=debug pull registry.redhat.io/rhel8/support-tools
...
DEBU[0000] Using registries.d directory /etc/containers/registries.d for sigstore configuration
DEBU[0000] Using "docker" namespace registry.redhat.io
DEBU[0000] Using https://registry.redhat.io/containers/sigstore
...

You can see that the signature storage address registry.redhat.io/containers/sigstore
matches the address you specified in the /etc/containers/registries.d/registry.redhat.io.yaml.

12. To list all images pulled to your local system, enter:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhel8/support-tools latest 5ef2aab09451 13 days ago 254 MB
registry.access.redhat.com/ubi8-minimal latest 86c870596572 13 days ago 146 MB

Additional resources

man podman-image-trust man page

Verifying image signing for Red Hat Container Registry .

3.12. REMOVING IMAGES

Use the podman rmi command to remove locally stored container images. You can remove an image by
its ID or name.

Procedure

1. List all images on your local system:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhel8/rsyslog latest 4b32d14201de 7 weeks ago 228 MB
registry.redhat.io/ubi8/ubi latest 3269c37eae33 7 weeks ago 208 MB
localhost/myubi X.Y 3269c37eae33 7 weeks ago 208 MB

2. List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
7ccd6001166e registry.redhat.io/rhel8/rsyslog:latest /bin/rsyslog.sh 6 seconds ago Up 5
seconds ago mysyslog

To remove the registry.redhat.io/rhel8/rsyslog image, you have to stop all containers running
from this image using the podman stop command. You can stop a container by its ID or name.

3. Stop the mysyslog container:

$ podman stop mysyslog
7ccd6001166e9720c47fbeb077e0afd0bb635e74a1b0ede3fd34d09eaf5a52e9

Red Hat Enterprise Linux 8 Building, running, and managing containers

30

4. Remove the registry.redhat.io/rhel8/rsyslog image:

$ podman rmi registry.redhat.io/rhel8/rsyslog

To remove multiple images:

$ podman rmi registry.redhat.io/rhel8/rsyslog registry.redhat.io/ubi8/ubi

To remove all images from your system:

$ podman rmi -a

To remove images that have multiple names (tags) associated with them, add the -f option
to remove them:

$ podman rmi -f 1de7d7b3f531
1de7d7b3f531...

CHAPTER 3. WORKING WITH CONTAINER IMAGES

31

CHAPTER 4. WORKING WITH CONTAINERS
Containers represent a running or stopped process created from the files located in a decompressed
container image. You can use the Podman tool to work with containers.

4.1. PODMAN RUN COMMAND

The podman run command runs a process in a new container based on the container image. If the
container image is not already loaded then podman run pulls the image, and all image dependencies,
from the repository in the same way running podman pull image, before it starts the container from
that image. The container process has its own file system, its own networking, and its own isolated
process tree.

The podman run command has the form:

podman run [options] image [command [arg ...]]

Basic options are:

--detach (-d): Runs the container in the background and prints the new container ID.

--attach (-a): Runs the container in the foreground mode.

--name (-n): Assigns a name to the container. If a name is not assigned to the container with --
name then it generates a random string name. This works for both background and foreground
containers.

--rm: Automatically remove the container when it exits. Note that the container will not be
removed when it could not be created or started successfully.

--tty (-t): Allocates and attaches the pseudo-terminal to the standard input of the container.

--interactive (-i): For interactive processes, use -i and -t together to allocate a terminal for the
container process. The -i -t is often written as -it.

4.2. RUNNING COMMANDS IN A CONTAINER FROM THE HOST

This procedure shows how to use the podman run command to display the type of operating system of
the container.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Display the type of operating system of the container based on the
registry.access.redhat.com/ubi8/ubi container image using the cat /etc/os-release command:

$ podman run --rm registry.access.redhat.com/ubi8/ubi cat /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.2 (Ootpa)"

Red Hat Enterprise Linux 8 Building, running, and managing containers

32

ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.2"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.2 (Ootpa)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:8.2:GA"
HOME_URL="https://www.redhat.com/"
BUG_REPORT_URL="https://bugzilla.redhat.com/"

REDHAT_BUGZILLA_PRODUCT="Red Hat Enterprise Linux 8"
REDHAT_BUGZILLA_PRODUCT_VERSION=8.2
REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux"
REDHAT_SUPPORT_PRODUCT_VERSION="8.2"

2. Optional: List all containers.

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Because of the --rm option you should not see any container. The container was removed.

Additional resources

man podman-run

4.3. RUNNING COMMANDS INSIDE THE CONTAINER

This procedure shows how you can use the podman run command to run a container interactively.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Run the container named myubi based on the registry.redhat.io/ubi8/ubi image:

$ podman run --name=myubi -it registry.access.redhat.com/ubi8/ubi /bin/bash
[root@6ccffd0f6421 /]#

The -i option creates an interactive session. Without the -t option, the shell stays open, but
you cannot type anything to the shell.

The -t option opens a terminal session. Without the -i option, the shell opens and then exits.

2. Install the procps-ng package containing a set of system utilities (for example ps, top, uptime,
and so on):

[root@6ccffd0f6421 /]# yum install procps-ng

CHAPTER 4. WORKING WITH CONTAINERS

33

3. Use the ps -ef command to list current processes:

ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 12:55 pts/0 00:00:00 /bin/bash
root 31 1 0 13:07 pts/0 00:00:00 ps -ef

4. Enter exit to exit the container and return to the host:

exit

5. Optional: List all containers:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
1984555a2c27 registry.redhat.io/ubi8/ubi:latest /bin/bash 21 minutes ago Exited (0) 21
minutes ago myubi

You can see that the container is in Exited status.

Additional resources

man podman-run

4.4. LISTING CONTAINERS

Use the podman ps command to list the running containers on the system.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Run the container based on registry.redhat.io/rhel8/rsyslog image:

$ podman run -d registry.redhat.io/rhel8/rsyslog

2. List all containers:

To list all running containers:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
74b1da000a11 rhel8/rsyslog /bin/rsyslog.sh 2 minutes ago Up About a minute
musing_brown

To list all containers, running or stopped:

Red Hat Enterprise Linux 8 Building, running, and managing containers

34

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES IS INFRA
d65aecc325a4 ubi8/ubi /bin/bash 3 secs ago Exited (0) 5 secs ago peaceful_hopper
false
74b1da000a11 rhel8/rsyslog rsyslog.sh 2 mins ago Up About a minute musing_brown
false

If there are containers that are not running, but were not removed (--rm option), the containers are
present and can be restarted.

Additional resources

man podman-ps

4.5. STARTING CONTAINERS

If you run the container and then stop it, and not remove it, the container is stored on your local system
ready to run again. You can use the podman start command to re-run the containers. You can specify
the containers by their container ID or name.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

At least one container has been stopped.

Procedure

1. Start the myubi container:

In the non interactive mode:

$ podman start myubi

Alternatively, you can use podman start 1984555a2c27.

In the interactive mode, use -a (--attach) and -t (--interactive) options to work with
container bash shell:

$ podman start -a -i myubi

Alternatively, you can use podman start -a -i 1984555a2c27.

2. Enter exit to exit the container and return to the host:

[root@6ccffd0f6421 /]# exit

Additional resources

man podman-start

CHAPTER 4. WORKING WITH CONTAINERS

35

4.6. INSPECTING CONTAINERS FROM THE HOST

Use the podman inspect command to inspect the metadata of an existing container in a JSON format.
You can specify the containers by their container ID or name.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

Inspect the container defined by ID 64ad95327c74:

To get all metadata:

$ podman inspect 64ad95327c74
[
 {
 "Id":
"64ad95327c740ad9de468d551c50b6d906344027a0e645927256cd061049f681",
 "Created": "2021-03-02T11:23:54.591685515+01:00",
 "Path": "/bin/rsyslog.sh",
 "Args": [
 "/bin/rsyslog.sh"
],
 "State": {
 "OciVersion": "1.0.2-dev",
 "Status": "running",
 ...

To get particular items from the JSON file, for example, the StartedAt timestamp:

$ podman inspect --format='{{.State.StartedAt}}' 64ad95327c74
2021-03-02 11:23:54.945071961 +0100 CET

The information is stored in a hierarchy. To see the container StartedAt timestamp
(StartedAt is under State), use the --format option and the container ID or name.

Examples of other items you might want to inspect include:

.Path to see the command run with the container

.Args arguments to the command

.Config.ExposedPorts TCP or UDP ports exposed from the container

.State.Pid to see the process id of the container

.HostConfig.PortBindings port mapping from container to host

Additional resources

man podman-inspect

Red Hat Enterprise Linux 8 Building, running, and managing containers

36

4.7. MOUNTING DIRECTORY ON LOCALHOST TO THE CONTAINER

This procedure shows how you can make log messages from inside a container available to the host
system by mounting the host /dev/log device inside the container.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Run the container named log_test and mount the host /dev/log device inside the container:

podman run --name="log_test" -v /dev/log:/dev/log --rm \
 registry.redhat.io/ubi8/ubi logger "Testing logging to the host"

2. Use the journalctl utility to display logs:

journalctl -b | grep Testing
Dec 09 16:55:00 localhost.localdomain root[14634]: Testing logging to the host

The --rm option removes the container when it exits.

Additional resources

man podman-run

4.8. MOUNTING A CONTAINER FILESYSTEM

Use the podman mount command to mount a working container root filesystem in a location accessible
from the host.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Run the container named mysyslog:

podman run -d --name=mysyslog registry.redhat.io/rhel8/rsyslog

2. Optional: List all containers:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

CHAPTER 4. WORKING WITH CONTAINERS

37

c56ef6a256f8 registry.redhat.io/rhel8/rsyslog:latest /bin/rsyslog.sh 20 minutes ago Up 20
minutes ago mysyslog

3. Mount the mysyslog container:

podman mount mysyslog
/var/lib/containers/storage/overlay/990b5c6ddcdeed4bde7b245885ce4544c553d108310e2b797
d7be46750894719/merged

4. Display the content of the mount point using ls command:

ls
/var/lib/containers/storage/overlay/990b5c6ddcdeed4bde7b245885ce4544c553d108310e2b797
d7be46750894719/merged
bin boot dev etc home lib lib64 lost+found media mnt opt proc root run sbin srv sys
tmp usr var

5. Display the OS version:

cat
/var/lib/containers/storage/overlay/990b5c6ddcdeed4bde7b245885ce4544c553d108310e2b797
d7be46750894719/merged/etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.3 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.3"

Additional resources

man podman-mount

4.9. RUNNING A SERVICE AS A DAEMON WITH A STATIC IP

The following example runs the rsyslog service as a daemon process in the background. The --ip option
sets the container network interface to a particular IP address (for example, 10.88.0.44). After that, you
can run the podman inspect command to check that you set the IP address properly.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Set the container network interface to the IP address 10.88.0.44:

podman run -d --ip=10.88.0.44 registry.access.redhat.com/rhel7/rsyslog
efde5f0a8c723f70dd5cb5dc3d5039df3b962fae65575b08662e0d5b5f9fbe85

2. Check that the IP address is set properly:

Red Hat Enterprise Linux 8 Building, running, and managing containers

38

podman inspect efde5f0a8c723 | grep 10.88.0.44
"IPAddress": "10.88.0.44",

Additional resources

man podman-run

4.10. EXECUTING COMMANDS INSIDE A RUNNING CONTAINER

Use the podman exec command to execute a command in a running container and investigate that
container. The reason for using the podman exec command instead of podman run command is that
you can investigate the running container without interrupting the container activity.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

The container is running.

Procedure

1. Execute the rpm -qa command inside the myrsyslog container to list all installed packages:

$ podman exec -it myrsyslog rpm -qa
tzdata-2020d-1.el8.noarch
python3-pip-wheel-9.0.3-18.el8.noarch
redhat-release-8.3-1.0.el8.x86_64
filesystem-3.8-3.el8.x86_64
...

2. Execute a /bin/bash command in the myrsyslog container:

$ podman exec -it myrsyslog /bin/bash

3. Install the procps-ng package containing a set of system utilities (for example ps, top, uptime,
and so on):

yum install procps-ng

4. Inspect the container:

To list every process on the system:

ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 10:23 ? 00:00:01 /usr/sbin/rsyslogd -n
root 8 0 0 11:07 pts/0 00:00:00 /bin/bash
root 47 8 0 11:13 pts/0 00:00:00 ps -ef

To display file system disk space usage:

CHAPTER 4. WORKING WITH CONTAINERS

39

df -h
Filesystem Size Used Avail Use% Mounted on
fuse-overlayfs 27G 7.1G 20G 27% /
tmpfs 64M 0 64M 0% /dev
tmpfs 269M 936K 268M 1% /etc/hosts
shm 63M 0 63M 0% /dev/shm
...

To display system information:

uname -r
4.18.0-240.10.1.el8_3.x86_64

To display amount of free and used memory in megabytes:

free --mega
total used free shared buff/cache available
Mem: 2818 615 1183 12 1020 1957
Swap: 3124 0 3124

Additional resources

man podman-exec

4.11. SHARING FILES BETWEEN TWO CONTAINERS

You can use volumes to persist data in containers even when a container is deleted. Volumes can be
used for sharing data among multiple containers. The volume is a folder which is stored on the host
machine. The volume can be shared between the container and the host.

Main advantages are:

Volumes can be shared among the containers.

Volumes are easier to back up or migrate.

Volumes do not increase the size of the containers.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Create a volume:

$ podman volume create hostvolume

2. Display information about the volume:

$ podman volume inspect hostvolume

Red Hat Enterprise Linux 8 Building, running, and managing containers

40

[
 {
 "name": "hostvolume",
 "labels": {},
 "mountpoint":
"/home/username/.local/share/containers/storage/volumes/hostvolume/_data",
 "driver": "local",
 "options": {},
 "scope": "local"
 }
]

Notice that it creates a volume in the volumes directory. You can save the mount point path to
the variable for easier manipulation: $ mntPoint=$(podman volume inspect hostvolume --
format {{.Mountpoint}}).

Notice that if you run sudo podman volume create hostvolume, then the mount point
changes to /var/lib/containers/storage/volumes/hostvolume/_data.

3. Create a text file inside the directory using the path is stored in the mntPoint variable:

$ echo "Hello from host" >> $mntPoint/host.txt

4. List all files in the directory defined by the mntPoint variable:

$ ls $mntPoint/
host.txt

5. Run the container named myubi1 and map the directory defined by the hostvolume volume
name on the host to the /containervolume1 directory on the container:

$ podman run -it --name myubi1 -v hostvolume:/containervolume1
registry.access.redhat.com/ubi8/ubi /bin/bash

Note that if you use the volume path defined by the mntPoint variable (-v
$mntPoint:/containervolume1), data can be lost when running podman volume prune
command, which removes unused volumes. Always use -v
hostvolume_name:/containervolume_name.

6. List the files in the shared volume on the container:

ls /containervolume1
host.txt

You can see the host.txt file which you created on the host.

7. Create a text file inside the /containervolume1 directory:

echo "Hello from container 1" >> /containervolume1/container1.txt

8. Detach from the container with CTRL+p and CTRL+q.

9. List the files in the shared volume on the host, you should see two files:

CHAPTER 4. WORKING WITH CONTAINERS

41

$ ls $mntPoint
container1.rxt host.txt

At this point, you are sharing files between the container and host. To share files between two
containers, run another container named myubi2. Steps 10 - 13 are analogous to steps 5 - 8.

10. Run the container named myubi2 and map the directory defined by the hostvolume volume
name on the host to the /containervolume2 directory on the container:

$ podman run -it --name myubi2 -v hostvolume:/containervolume2
registry.access.redhat.com/ubi8/ubi /bin/bash

11. List the files in the shared volume on the container:

ls /containervolume2
container1.txt host.txt

You can see the host.txt file which you created on the host and container1.txt which you
created inside the myubi1 container.

12. Create a text file inside the /containervolume2 directory:

echo "Hello from container 2" >> /containervolume2/container2.txt

13. Detach from the container with CTRL+p and CTRL+q.

14. List the files in the shared volume on the host, you should see three files:

$ ls $mntPoint
container1.rxt container2.txt host.txt

Additional resources

man podman-volume

4.12. EXPORTING AND IMPORTING CONTAINERS

You can use the podman export command to export the file system of a running container to a tarball
on your local machine. For example, if you have a large container that you use infrequently or one that
you want to save a snapshot of in order to revert back to it later, you can use the podman export
command to export a current snapshot of your running container into a tarball.

You can use the podman import command to import a tarball and save it as a filesystem image. Then
you can run this filesystem image or you can use it as a layer for other images.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

Red Hat Enterprise Linux 8 Building, running, and managing containers

42

1. Run the myubi container based on the registry.access.redhat.com/ubi8/ubi image:

$ podman run -dt --name=myubi registry.access.redhat.com/ubi8/ubi

2. Optional: List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a6a6d4896142 registry.access.redhat.com/ubi8:latest /bin/bash 7 seconds ago Up 7
seconds ago myubi

3. Attach to the myubi container:

$ podman attach myubi

4. Create a file named testfile:

[root@a6a6d4896142 /]# echo "hello" > testfile

5. Detach from the container with CTRL+p and CTRL+q.

6. Export the file system of the myubi as a myubi-container.tar on the local machine:

$ podman export -o myubi.tar a6a6d4896142

7. Optional: List the current directory content:

$ ls -l
-rw-r--r--. 1 user user 210885120 Apr 6 10:50 myubi-container.tar
...

8. Optional: Create a myubi-container directory, extract all files from the myubi-container.tar
archive. List a content of the myubi-directory in a tree-like format:

$ mkdir myubi-container
$ tar -xf myubi-container.tar -C myubi-container
$ tree -L 1 myubi-container
├── bin -> usr/bin
├── boot
├── dev
├── etc
├── home
├── lib -> usr/lib
├── lib64 -> usr/lib64
├── lost+found
├── media
├── mnt
├── opt
├── proc
├── root
├── run
├── sbin -> usr/sbin

CHAPTER 4. WORKING WITH CONTAINERS

43

├── srv
├── sys
├── testfile
├── tmp
├── usr
└── var

20 directories, 1 file

You can see that the myubi-container.tar contains the container file system.

9. Import the myubi.tar and saves it as a filesystem image:

$ podman import myubi.tar myubi-imported
Getting image source signatures
Copying blob 277cab30fe96 done
Copying config c296689a17 done
Writing manifest to image destination
Storing signatures
c296689a17da2f33bf9d16071911636d7ce4d63f329741db679c3f41537e7cbf

10. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/myubi-imported latest c296689a17da 51 seconds ago 211 MB

11. Display the content of the testfile file:

$ podman run -it --name=myubi-imported docker.io/library/myubi-imported cat testfile
hello

Additional resources

podman-export man page

podman-import man page

4.13. STOPPING CONTAINERS

Use the podman stop command to stop a running container. You can specify the containers by their
container ID or name.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

At least one container is running.

Procedure

Red Hat Enterprise Linux 8 Building, running, and managing containers

44

Stop the myubi container:

Using the container name:

$ podman stop myubi

Using the container ID:

$ podman stop 1984555a2c27

To stop a running container that is attached to a terminal session, you can enter the exit command
inside the container.

The podman stop command sends a SIGTERM signal to terminate a running container. If the container
does not stop after a defined period (10 seconds by default), Podman sends a SIGKILL signal.

You can also use the podman kill command to kill a container (SIGKILL) or send a different signal to a
container. Here is an example of sending a SIGHUP signal to a container (if supported by the application,
a SIGHUP causes the application to re-read its configuration files):

podman kill --signal="SIGHUP" 74b1da000a11
74b1da000a114015886c557deec8bed9dfb80c888097aa83f30ca4074ff55fb2

Additional resources

man podman-stop

man podman-kill

4.14. REMOVING CONTAINERS

Use the podman rm command to remove containers. You can specify containers with the container ID
or name.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

At least one container has been stopped.

Procedure

1. List all containers, running or stopped:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
IS INFRA
d65aecc325a4 ubi8/ubi /bin/bash 3 secs ago Exited (0) 5 secs ago peaceful_hopper false
74b1da000a11 rhel8/rsyslog rsyslog.sh 2 mins ago Up About a minute musing_brown
false

CHAPTER 4. WORKING WITH CONTAINERS

45

2. Remove the containers:

To remove the peaceful_hopper container:

$ podman rm peaceful_hopper

Notice that the peaceful_hopper container was in Exited status, which means it was
stopped and it can be removed immediately.

To remove the musing_brown container, first stop the container and then remove it:

$ podman stop musing_brown
$ podman rm musing_brown

NOTE

To remove multiple containers:

$ podman rm clever_yonath furious_shockley

To remove all containers from your local system:

$ podman rm -a

Additional resources

man podman-rm

Red Hat Enterprise Linux 8 Building, running, and managing containers

46

CHAPTER 5. WORKING WITH PODS
Containers are the smallest unit that you can manage with Podman, Skopeo and Buildah container tools.
A Podman pod is a group of one or more containers. The Pod concept was introduced by Kubernetes.
Podman pods are similar to the Kubernetes definition. Pods are the smallest compute units that you can
create, deploy, and manage in OpenShift or Kubernetes environments. Every Podman pod includes an
infra container. This container holds the namespaces associated with the pod and allows Podman to
connect other containers to the pod. It allows you to start and stop containers within the pod and the
pod will stay running. The default infra container on the registry.access.redhat.com/ubi8/pause
image.

5.1. CREATING PODS

This procedure shows how to create a pod with one container.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

Procedure

1. Create an empty pod:

$ podman pod create --name mypod
223df6b390b4ea87a090a4b5207f7b9b003187a6960bd37631ae9bc12c433aff
The pod is in the initial state Created.

The pod is in the initial state Created.

2. Optional: List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
223df6b390b4 mypod Created Less than a second ago 1 3afdcd93de3e

Notice that the pod has one container in it.

3. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES POD
3afdcd93de3e registry.access.redhat.com/ubi8/pause Less than a second ago
Created 223df6b390b4-infra 223df6b390b4

You can see that the pod ID from podman ps command matches the pod ID in the podman
pod ps command. The default infra container is based on the
registry.access.redhat.com/ubi8/pause image.

4. Run a container named myubi in the existing pod named mypod:

CHAPTER 5. WORKING WITH PODS

47

$ podman run -dt --name myubi --pod mypod registry.access.redhat.com/ubi8/ubi /bin/bash
5df5c48fea87860cf75822ceab8370548b04c78be9fc156570949013863ccf71

5. Optional: List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
223df6b390b4 mypod Running Less than a second ago 2 3afdcd93de3e

You can see that the pod has two containers in it.

6. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD
5df5c48fea87 registry.access.redhat.com/ubi8/ubi:latest /bin/bash Less than a second ago
Up Less than a second ago myubi 223df6b390b4
3afdcd93de3e registry.access.redhat.com/ubi8/pause Less than a
second ago Up Less than a second ago 223df6b390b4-infra 223df6b390b4

Additional resources

podman-pod-create man page

Podman: Managing pods and containers in a local container runtime article

5.2. DISPLAYING POD INFORMATION

This procedure provides information on how to display pod information.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

The pod has been created. For details, see section Creating pods.

Procedure

Display active processes running in a pod:

To display the running processes of containers in a pod, enter:

$ podman pod top mypod
USER PID PPID %CPU ELAPSED TTY TIME COMMAND
0 1 0 0.000 24.077433518s ? 0s /pause
root 1 0 0.000 24.078146025s pts/0 0s /bin/bash

To display a live stream of resource usage stats for containers in one or more pods, enter:

$ podman pod stats -a --no-stream

Red Hat Enterprise Linux 8 Building, running, and managing containers

48

ID NAME CPU % MEM USAGE / LIMIT MEM % NET IO BLOCK IO
PIDS
a9f807ffaacd frosty_hodgkin -- 3.092MB / 16.7GB 0.02% -- / -- -- / -- 2
3b33001239ee sleepy_stallman -- -- / -- -- -- / -- -- / -- --

To display information describing the pod, enter:

$ podman pod inspect mypod
{
 "Id": "db99446fa9c6d10b973d1ce55a42a6850357e0cd447d9bac5627bb2516b5b19a",
 "Name": "mypod",
 "Created": "2020-09-08T10:35:07.536541534+02:00",
 "CreateCommand": [
 "podman",
 "pod",
 "create",
 "--name",
 "mypod"
],
 "State": "Running",
 "Hostname": "mypod",
 "CreateCgroup": false,
 "CgroupParent": "/libpod_parent",
 "CgroupPath":
"/libpod_parent/db99446fa9c6d10b973d1ce55a42a6850357e0cd447d9bac5627bb2516b5
b19a",
 "CreateInfra": false,
 "InfraContainerID":
"891c54f70783dcad596d888040700d93f3ead01921894bc19c10b0a03c738ff7",
 "SharedNamespaces": [
 "uts",
 "ipc",
 "net"
],
 "NumContainers": 2,
 "Containers": [
 {
 "Id":
"891c54f70783dcad596d888040700d93f3ead01921894bc19c10b0a03c738ff7",
 "Name": "db99446fa9c6-infra",
 "State": "running"
 },
 {
 "Id":
"effc5bbcfe505b522e3bf8fbb5705a39f94a455a66fd81e542bcc27d39727d2d",
 "Name": "myubi",
 "State": "running"
 }
]
}

You can see information about containers in the pod.

Additional resources

CHAPTER 5. WORKING WITH PODS

49

podman pod top man page

podman-pod-stats man page

podman-pod-inspect man page

5.3. STOPPING PODS

You can stop one or more pods using the podman pod stop command.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

The pod has been created. For details, see section Creating pods.

Procedure

1. Stop the pod mypod:

$ podman pod stop mypod

2. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
5df5c48fea87 registry.redhat.io/ubi8/ubi:latest /bin/bash About a minute ago Exited (0) 7
seconds ago myubi 223df6b390b4 mypod

3afdcd93de3e registry.access.redhat.com/ubi8/pause About a minute ago
Exited (0) 7 seconds ago 8a4e6527ac9d-infra 223df6b390b4 mypod

You can see that the pod mypod and container myubi are in "Exited" status.

Additional resources

podman-pod-stop man page

5.4. REMOVING PODS

You can remove one or more stopped pods and containers using the podman pod rm command.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

The pod has been created. For details, see section Creating pods.

Red Hat Enterprise Linux 8 Building, running, and managing containers

50

The pod has been stopped. For details, see section Stopping pods.

Procedure

1. Remove the pod mypod, type:

$ podman pod rm mypod
223df6b390b4ea87a090a4b5207f7b9b003187a6960bd37631ae9bc12c433aff

Note that removing the pod automatically removes all containers inside it.

2. Optional: Check that all containers and pods were removed:

$ podman ps
$ podman pod ps

Additional resources

podman-pod-rm man page

CHAPTER 5. WORKING WITH PODS

51

CHAPTER 6. ADDING SOFTWARE TO A RUNNING UBI
CONTAINER

Red Hat Universal Base Images (UBIs) are built from a subset of the RHEL content. UBIs also provide a
subset of RHEL packages that are freely available to install for use with UBI. To add or update software
to a running container, you can use the yum repositories that include RPM packages and updates. UBIs
provide a set of pre-built language runtime container images such as Python, Perl, Node.js, Ruby, and so
on.

To add packages from UBI repositories to running UBI containers:

On UBI init and UBI standard images, use the yum command

On UBI minimal images, use the microdnf command

NOTE

Installing and working with software packages directly in running containers adds
packages temporarily. The changes are not saved in the container image. To make
package changes persistent, see section Building an image from a Dockerfile with
Buildah.

NOTE

When you add software to a UBI container, procedures differ for updating UBIs on a
subscribed RHEL host or on an unsubscribed (or non-RHEL) system.

6.1. ADDING SOFTWARE TO A UBI CONTAINER ON A SUBSCRIBED
HOST

If you are running a UBI container on a registered and subscribed RHEL host, the RHEL Base and
AppStream repositories are enabled inside the standard UBI container, along with all the UBI
repositories.

Additional resources

Universal Base Images (UBI): Images, repositories, packages, and source code

6.2. ADDING SOFTWARE IN A STANDARD UBI CONTAINER

To add software inside the standard UBI container, disable non-UBI yum repositories to ensure the
containers you build can be redistributed.

Procedure

1. Pull and run the registry.access.redhat.com/ubi8/ubi image:

$ podman run -it --name myubi registry.access.redhat.com/ubi8/ubi

2. Add a package to the myubi container.

To add a package that is in the UBI repository, disable all yum repositories except for UBI
repositories. For example, to add the bzip2 package:

Red Hat Enterprise Linux 8 Building, running, and managing containers

52

yum install --disablerepo=* --enablerepo=ubi-8-appstream --enablerepo=ubi-8-baseos
bzip2

To add a package that is not in the UBI repository, do not disable any repositories. For
example, to add the zsh package:

yum install zsh

To add a package that is in a different host repository, explicitly enable the repository you
need. For example, to install the python38-devel package from the codeready-builder-for-
rhel-8-x86_64-rpms repository:

yum install --enablerepo=codeready-builder-for-rhel-8-x86_64-rpms python38-devel

Verification steps

1. List all enabled repositories inside the container:

yum repolist

2. Ensure that the required repositories are listed.

3. List all installed packages:

rpm -qa

4. Ensure that the required packages are listed.

NOTE

Installing Red Hat packages that are not inside the Red Hat UBI repositories can limit the
ability to distribute the container outside of subscribed RHEL systems.

6.3. ADDING SOFTWARE IN A MINIMAL UBI CONTAINER

UBI yum repositories are enabled inside UBI Minimal images by default.

Procedure

1. Pull and run the registry.access.redhat.com/ubi8/ubi-minimal image:

$ podman run -it --name myubimin registry.access.redhat.com/ubi8/ubi-minimal

2. Add a package to the myubimin container:

To add a package that is in the UBI repository, do not disable any repositories. For example,
to add the bzip2 package:

microdnf install bzip2

To add a package that is in a different host repository, explicitly enable the repository you
need. For example, to install the python38-devel package from the codeready-builder-for-
rhel-8-x86_64-rpms repository:

CHAPTER 6. ADDING SOFTWARE TO A RUNNING UBI CONTAINER

53

microdnf install --enablerepo=codeready-builder-for-rhel-8-x86_64-rpms python38-
devel

Verification steps

1. List all enabled repositories inside the container:

microdnf repolist

2. Ensure that the required repositories are listed.

3. List all installed packages:

rpm -qa

4. Ensure that the required packages are listed.

NOTE

Installing Red Hat packages that are not inside the Red Hat UBI repositories can limit the
ability to distribute the container outside of subscribed RHEL systems.

6.4. ADDING SOFTWARE TO A UBI CONTAINER ON A UNSUBSCRIBED
HOST

You do not have to disable any repositories when adding software packages on unsubscribed RHEL
systems.

Procedure

Add a package to a running container based on the UBI standard or UBI init images. Do not
disable any repositories. Use the podman run command to run the container. then use the yum
install command inside a container.

For example, to add the bzip2 package to the UBI standard based container:

$ podman run -it --name myubi registry.access.redhat.com/ubi8/ubi
yum install bzip2

1. For example, to add the bzip2 package to the UBI init based container:

$ podman run -it --name myubimin registry.access.redhat.com/ubi8/ubi-minimal
microdnf install bzip2

Verification steps

1. List all enabled repositories:

To list all enabled repositories inside the containers based on UBI standard or UBI init
images:

yum repolist

Red Hat Enterprise Linux 8 Building, running, and managing containers

54

To list all enabled repositories inside the containers based on UBI minimal containers:

microdnf repolist

2. Ensure that the required repositories are listed.

3. List all installed packages:

rpm -qa

4. Ensure that the required packages are listed.

6.5. BUILDING UBI-BASED IMAGES

You can create a UBI-based web server container from a Containerfile using the Buildah utility. You
have to disable all non-UBI yum repositories to ensure that your image contains only Red Hat software
that you can redistribute.

NOTE

For UBI minimal images, use microdnf instead of yum:

RUN microdnf update -y && rm -rf /var/cache/yum
RUN microdnf install httpd -y && microdnf clean all

Procedure

1. Create a Containerfile:

FROM registry.access.redhat.com/ubi8/ubi
USER root
LABEL maintainer="John Doe"
Update image
RUN yum update --disablerepo=* --enablerepo=ubi-8-appstream --enablerepo=ubi-8-baseos
-y && rm -rf /var/cache/yum
RUN yum install --disablerepo=* --enablerepo=ubi-8-appstream --enablerepo=ubi-8-baseos
httpd -y && rm -rf /var/cache/yum
Add default Web page and expose port
RUN echo "The Web Server is Running" > /var/www/html/index.html
EXPOSE 80
Start the service
CMD ["-D", "FOREGROUND"]
ENTRYPOINT ["/usr/sbin/httpd"]

2. Build the container image:

buildah bud -t johndoe/webserver .
STEP 1: FROM registry.access.redhat.com/ubi8/ubi:latest
STEP 2: USER root
STEP 3: LABEL maintainer="John Doe"
STEP 4: RUN yum update --disablerepo=* --enablerepo=ubi-8-appstream --enablerepo=ubi-
8-baseos -y
...

CHAPTER 6. ADDING SOFTWARE TO A RUNNING UBI CONTAINER

55

Writing manifest to image destination
Storing signatures
--> f9874f27050
f9874f270500c255b950e751e53d37c6f8f6dba13425d42f30c2a8ef26b769f2

Verification steps

1. Run the web server:

podman run -d --name=myweb -p 80:80 johndoe/webserver
bbe98c71d18720d966e4567949888dc4fb86eec7d304e785d5177168a5965f64

2. Test the web server:

curl http://localhost/index.html
The Web Server is Running

6.6. USING APPLICATION STREAM RUNTIME IMAGES

Runtime images based on Application Streams offer a set of container images that you can use as the
basis for your container builds.

Supported runtime images are Python, Ruby, s2-core, s2i-base, .NET Core, PHP. The runtime images
are available in the Red Hat Container Catalog .

NOTE

Because these UBI images contain the same basic software as their legacy image counterparts, you
can learn about those images from the Using Red Hat Software Collections Container Images guide .

Additional resources

Red Hat Container Catalog

Red Hat Container Image Updates

6.7. GETTING UBI CONTAINER IMAGE SOURCE CODE

Source code is available for all Red Hat UBI-based images in the form of downloadable container
images. Source container images cannot be run, despite being packaged as containers. To install Red
Hat source container images on your system, use the skopeo command, not the podman pull
command.

Source container images are named based on the binary containers they represent. For example, for a
particular standard RHEL UBI 8 container registry.access.redhat.com/ubi8:8.1-397 append -source to
get the source container image (registry.access.redhat.com/ubi8:8.1-397-source).

Procedure

1. Use the skopeo copy command to copy the source container image to a local directory:

$ skopeo copy \
docker://registry.access.redhat.com/ubi8:8.1-397-source \
dir:$HOME/TEST

Red Hat Enterprise Linux 8 Building, running, and managing containers

56

...
Copying blob 477bc8106765 done
Copying blob c438818481d3 done
...
Writing manifest to image destination
Storing signatures

2. Use the skopeo inspect command to inspect the source container image:

$ skopeo inspect dir:$HOME/TEST
{
 "Digest":
"sha256:7ab721ef3305271bbb629a6db065c59bbeb87bc53e7cbf88e2953a1217ba7322",
 "RepoTags": [],
 "Created": "2020-02-11T12:14:18.612461174Z",
 "DockerVersion": "",
 "Labels": null,
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:1ae73d938ab9f11718d0f6a4148eb07d38ac1c0a70b1d03e751de8bf3c2c87fa",
 "sha256:9fe966885cb8712c47efe5ecc2eaa0797a0d5ffb8b119c4bd4b400cc9e255421",
 "sha256:61b2527a4b836a4efbb82dfd449c0556c0f769570a6c02e112f88f8bbcd90166",
 ...
 "sha256:cc56c782b513e2bdd2cc2af77b69e13df4ab624ddb856c4d086206b46b9b9e5f",
 "sha256:dcf9396fdada4e6c1ce667b306b7f08a83c9e6b39d0955c481b8ea5b2a465b32",

"sha256:feb6d2ae252402ea6a6fca8a158a7d32c7e4572db0e6e5a5eab15d4e0777951e"
],
 "Env": null
}

3. Unpack all the content:

$ cd $HOME/TEST
$ for f in $(ls); do tar xvf $f; done

4. Check the results:

$ find blobs/ rpm_dir/
blobs/
blobs/sha256
blobs/sha256/10914f1fff060ce31388f5ab963871870535aaaa551629f5ad182384d60fdf82
rpm_dir/
rpm_dir/gzip-1.9-4.el8.src.rpm

If the results are correct, the image is ready to be used.

NOTE

It could take several hours after a container image is released for its associated source
container to become available.

Additional resources

CHAPTER 6. ADDING SOFTWARE TO A RUNNING UBI CONTAINER

57

skopeo-copy man page

skopeo-inspect man page

Red Hat Enterprise Linux 8 Building, running, and managing containers

58

CHAPTER 7. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A
CONTAINER

This chapter describes how you can run Skopeo, Buildah, and Podman in a container.

With Skopeo, you can inspect images on a remote registry without having to download the entire image
with all its layers. You can also use Skopeo for copying images, signing images, syncing images, and
converting images across different formats and layer compressions.

Buildah facilitates building OCI container images. With Buildah, you can create a working container,
either from scratch or using an image as a starting point. You can create an image either from a working
container or via the instructions in a Dockerfile. You can mount and unmount a working container’s root
filesystem.

With Podman, you can manage containers and images, volumes mounted into those containers, and
pods made from groups of containers. Podman is based on a libpod library for container lifecycle
management. The libpod library provides APIs for managing containers, pods, container images, and
volumes.

Reasons to run Buildah, Skopeo, and Podman in a container:

CI/CD system:

Podman and Skopeo: You can run a CI/CD system inside of Kubernetes or use OpenShift
to build your container images, and possibly distribute those images across different
container registries. To integrate Skopeo into a Kubernetes workflow, you need to run it in a
container.

Buildah: You want to build OCI/container images within a Kubernetes or OpenShift CI/CD
systems that are constantly building images. Previously, people used a Docker socket to
connect to the container engine and perform a docker build command. This was the
equivalent of giving root access to the system without requiring a password which is not
secure. For this reason, Red Hat recommends using Buildah in a container.

Different versions:

All: You are running an older OS on the host but you want to run the latest version of
Skopeo, Buildah, or Podman. The solution is to run the container tools in a container. For
example, this is useful for running the latest version of the container tools provided in RHEL
8 on a RHEL 7 container host which does not have access to the newest versions natively.

HPC environment:

All: A common restriction in HPC environments is that non-root users are not allowed to
install packages on the host. When you run Skopeo, Buildah, or Podman in a container, you
can perform these specific tasks as a non-root user.

7.1. RUNNING SKOPEO IN A CONTAINER

This procedure demonstrates how to inspect a remote container image using Skopeo. Running Skopeo
in a container means that the container root filesystem is isolated from the host root filesystem. To
share or copy files between the host and container, you have to mount files and directories.

Prerequisites

The container-tools module is installed.

CHAPTER 7. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

59

yum module install -y container-tools

Procedure

1. Log in to the registry.redhat.io registry:

$ podman login registry.redhat.io
Username: myuser@mycompany.com
Password: ***********
Login Succeeded!

2. Get the registry.redhat.io/rhel8/skopeo container image:

$ podman pull registry.redhat.io/rhel8/skopeo

3. Inspect a remote container image registry.access.redhat.com/ubi8/ubi using Skopeo:

$ podman run --rm registry.redhat.io/rhel8/skopeo skopeo inspect
docker://registry.access.redhat.com/ubi8/ubi
{
 "Name": "registry.access.redhat.com/ubi8/ubi",
 ...
 "Labels": {
 "architecture": "x86_64",
 ...
 "name": "ubi8",
 ...
 "summary": "Provides the latest release of Red Hat Universal Base Image 8.",
 "url":
"https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/images/8.2-347",
 ...
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 ...
],
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "container=oci"
]
}

The --rm option removes the registry.redhat.io/rhel8/skopeo image after the container exits.

Additional resources

How to run skopeo in a container article

7.2. RUNNING SKOPEO IN A CONTAINER USING CREDENTIALS

Working with container registries requires an authentication to access and alter data. Skopeo supports
various ways to specify credentials.

Red Hat Enterprise Linux 8 Building, running, and managing containers

60

With this approach you can specify credentials on the command line using the --cred
USERNAME[:PASSWORD] option.

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

Procedure

Inspect a remote container image using Skopeo against a locked registry:

$ podman run --rm registry.redhat.io/rhel8/skopeo inspect --creds $USER:$PASSWORD
docker://$IMAGE

Additional resources

How to run skopeo in a container article

7.3. RUNNING SKOPEO IN A CONTAINER USING AUTHFILES

You can use an authentication file (authfile) to specify credentials. The skopeo login command logs
into the specific registry and stores the authentication token in the authfile. The advantage of using
authfiles is preventing the need to repeatedly enter credentials.

When running on the same host, all container tools such as Skopeo, Buildah, and Podman share the
same authfile. When running Skopeo in a container, you have to either share the authfile on the host by
volume-mounting the authfile in the container, or you have to reauthenticate within the container.

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

Procedure

Inspect a remote container image using Skopeo against a locked registry:

$ podman run --rm -v $AUTHFILE:/auth.json registry.redhat.io/rhel8/skopeo inspect
docker://$IMAGE

The -v $AUTHFILE:/auth.json option volume-mounts an authfile at /auth.json within the
container. Skopeo can now access the authentication tokens in the authfile on the host and get
secure access to the registry.

Other Skopeo commands work similarly, for example:

Use the skopeo-copy command to specify credentials on the command line for the source and
destination image using the --source-creds and --dest-creds options. It also reads the
/auth.json authfile.

If you want to specify separate authfiles for the source and destination image, use the --

CHAPTER 7. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

61

If you want to specify separate authfiles for the source and destination image, use the --
source-authfile and --dest-authfile options and volume-mount those authfiles from the host
into the container.

Additional resources

How to run skopeo in a container article

7.4. COPYING CONTAINER IMAGES TO OR FROM THE HOST

Skopeo, Buildah, and Podman share the same local container-image storage. If you want to copy
containers to or from the host container storage, you need to mount it into the Skopeo container.

NOTE

The path to the host container storage differs between root
(/var/lib/containers/storage) and non-root users
($HOME/.local/share/containers/storage).

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

Procedure

1. Copy the registry.access.redhat.com/ubi8/ubi image into your local container storage:

$ podman run --privileged --rm -v
$HOME/.local/share/containers/storage:/var/lib/containers/storage
registry.redhat.io/rhel8/skopeo skopeo copy docker://registry.access.redhat.com/ubi8/ubi
containers-storage:registry.access.redhat.com/ubi8/ubi

The --privileged option disables all security mechanisms. Red Hat recommends only using
this option in trusted environments.

To avoid disabling security mechanisms, export the images to a tarball or any other path-
based image transport and mount them in the Skopeo container:

$ podman save --format oci-archive -o oci.tar $IMAGE

$ podman run --rm -v oci.tar:/oci.tar registry.redhat.io/rhel8/skopeo copy oci-
archive:/oci.tar $DESTINATION

2. Optional: List images in local storage:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest ecbc6f53bba0 8 weeks ago 211 MB

Additional resources

How to run skopeo in a container article

Red Hat Enterprise Linux 8 Building, running, and managing containers

62

7.5. RUNNING BUILDAH IN A CONTAINER

The procedure demonstrates how to run Buildah in a container and create a working container based on
an image.

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

Procedure

1. Log in to the registry.redhat.io registry:

$ podman login registry.redhat.io
Username: myuser@mycompany.com
Password: ***********
Login Succeeded!

2. Pull and run the registry.redhat.io/rhel8/buildah image:

podman run --rm --device /dev/fuse -it registry.redhat.io/rhel8/buildah /bin/bash

The --rm option removes the registry.redhat.io/rhel8/buildah image after the container
exits.

The --device option adds a host device to the container.

3. Create a new container using a registry.access.redhat.com/ubi8 image:

buildah from registry.access.redhat.com/ubi8
...
ubi8-working-container

4. Run the ls / command inside the ubi8-working-container container:

buildah run --isolation=chroot ubi8-working-container ls /
bin boot dev etc home lib lib64 lost+found media mnt opt proc root run sbin srv

5. Optional: List all images in a local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8 latest ecbc6f53bba0 5 weeks ago 211 MB

6. Optional: List the working containers and their base images:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
0aaba7192762 * ecbc6f53bba0 registry.access.redhat.com/ub... ubi8-working-container

7. Optional: Push the registry.access.redhat.com/ubi8 image to the a local registry located on

CHAPTER 7. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

63

7. Optional: Push the registry.access.redhat.com/ubi8 image to the a local registry located on
registry.example.com:

buildah push ecbc6f53bba0 registry.example.com:5000/ubi8/ubi

Additional resources

Best practices for running Buildah in a container article

7.6. RUNNING PODMAN IN A CONTAINER

This procedure shows how to run container in container using Podman. This example shows how to use
Podman to build and run another container from within this container. The container will run "Moon-
buggy", a simple text-based game.

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

You are logged in to the registry.redhat.io registry:

podman login registry.redhat.io

Procedure

1. Run the container based on registry.redhat.io/rhel8/podman image:

podman run --privileged --name podman_container -it registry.redhat.io/rhel8/podman
/bin/bash

The --it option specifies that you want to run an interactive bash shell within a container.

The --privileged option adds additional capabilities necessary to run Podman in Podman.

2. Create a Containerfile inside the podman_container container:

vi Containerfile
FROM registry.access.redhat.com/ubi8/ubi
RUN yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
RUN yum -y install moon-buggy && yum clean all
CMD ["/usr/bin/moon-buggy"]

The commands in the Containerfile cause the following build command to:

Build a container from the registry.access.redhat.com/ubi8/ubi image.

Install the epel-release-latest-8.noarch.rpm package.

Install the moon-buggy package.

Set the container command.

Red Hat Enterprise Linux 8 Building, running, and managing containers

64

3. Build a new container image named moon-buggy using the Containerfile:

podman build -t moon-buggy .

4. Optional: List all images:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/moon-buggy latest c97c58abb564 13 seconds ago 1.67 GB
registry.access.redhat.com/ubi8/ubi latest 4199acc83c6a 132seconds ago 213 MB

5. Run a new container based on a moon-buggy container:

podman run -it --name moon moon-buggy

6. Optional: Tag the moon-buggy image:

podman tag moon-buggy registry.example.com/moon-buggy

7. Optional: Push the moon-buggy image to the registry:

podman push registry.example.com/moon-buggy

Additional resources

Technology preview: Running a container inside a container article

CHAPTER 7. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

65

CHAPTER 8. RUNNING SPECIAL CONTAINER IMAGES
Use this chapter to learn about some special types of container images. These include:

Toolbox: Instead of burdening a host system by installing tools needed to debug problems or
monitor features, you can run the toolbox command. Toolbox starts a support-tools container
image that holds tools you can use to run reports or diagnose problems on the host.

Runlabels: Some container images have labels built in that allow you to run those containers
with preset options and arguments. The podman container runlabel <label> command, allows
you to execute the command defined in that <label> for the container image. Supported labels
are install, run and uninstall.

8.1. TROUBLESHOOTING CONTAINER HOSTS WITH TOOLBOX

Instead of installing troubleshooting tools directly on your RHEL 8 system, the toolbox utility offers a
way to temporarily add those tools, then easily discard them when you are done. The toolbox utility
works by:

Pulling the registry.redhat.io/rhel8/support-tools image to your local system.

Starting up a container from the image, then running a shell inside the container from which you
can access the host system.

The support-tools container allows you to:

Run commands that may not be installed on the host system, such as sosreport, strace, or
tcpdump, in a way that lets them act on the host system.

Install more software inside the container to use on the host system.

Discard the container when you are done.

The following illustrates a typical toolbox session.

Procedure

1. Ensure that the toolbox and podman packages are installed:

yum module list container-tools

To install the full set of container tools, type:

yum module install container-tools -y

2. Run the toolbox command to pull and run the support-tools image (inserting your Red Hat
Customer Portal credentials when prompted):

toolbox
Trying to pull registry.redhat.io/rhel8/support-tools...
...
Would you like to authenticate to registry: 'registry.redhat.io' and try again? [y/N] y
Username: johndoe
Password: *************
Login Succeeded!

Red Hat Enterprise Linux 8 Building, running, and managing containers

66

Trying to pull registry.redhat.io/rhel8/support-tools...Getting image source signatures
...
Storing signatures
30e261462851238d38f4ef2afdaf55f1f8187775c5ca373b43e0f55722faaf97
Spawning a container 'toolbox-root' with image 'registry.redhat.io/rhel8/support-tools'
Detected RUN label in the container image. Using that as the default...
command: podman run -it --name toolbox-root --privileged --ipc=host --net=host --pid=host -e
HOST=/host -e NAME=toolbox-root -e IMAGE=registry.redhat.io/rhel8/support-tools:latest -v
/run:/run -v /var/log:/var/log -v /etc/machine-id:/etc/machine-id -v /etc/localtime:/etc/localtime -
v /:/host registry.redhat.io/rhel8/support-tools:latest

3. Open a bash shell to run commands inside the container:

bash-4.4#

4. From inside the container, the root file system on the host is available from the /host directory.
The other directories shown are all inside the container.

ls /
bin dev home lib lost+found mnt proc run srv tmp var
boot etc host lib64 media opt root sbin sys usr

5. Try to run a command inside your container. The sosreport command allows you to generate
information about your system to send to Red Hat support:

bash-4.4# sosreport

sosreport (version 3.6)
This command will collect diagnostic and configuration information from
this Red Hat Enterprise Linux system and installed applications.

An archive containing the collected information will be generated in
/host/var/tmp/sos.u82evisb and may be provided to a Red Hat support
representative.
...
Press ENTER to continue, or CTRL-C to quit. <Press ENTER>
...
Your sosreport has been generated and saved in:
 /host/var/tmp/sosreport-rhel81beta-12345678-2019-10-29-pmgjncg.tar.xz
The checksum is: c4e1fd3ee45f78a17afb4e45a05842ed
Please send this file to your support representative.

Note that sosreport command saves the report to the host (/host/var/tmp/sosreport-<ID>).

6. Install a software package inside the container, to add tools that are not already in the container.
For example, to get a core dump of a running process on the host, install the procps and gcore
packages, use ps to get the process ID of a running daemon, then use gcore to get a core
dump:

bash-4.4# yum install procps gdb -y
bash-4.4# ps -ef | grep chronyd
994 809 1 0 Oct28 ? 00:00:00 /usr/sbin/chronyd
bash-4.4# gcore -o /host/tmp/chronyd.core 809
Missing separate debuginfo for target:/usr/sbin/chronyd
Try: dnf --enablerepo='*debug*' install /usr/lib/debug/.build-

CHAPTER 8. RUNNING SPECIAL CONTAINER IMAGES

67

id/96/0789a8a3bf28932b093e94b816be379f16a56a.debug
...
Saved corefile /host/tmp/chronyd.core.809
[Inferior 1 (process 809) detached]

7. To leave the container and return to the host, type exit. The file is saved to
/host/tmp/chronyd.core.809 and is available from /tmp/chronyd.core.809 on the host.

8. To remove the toolbox-root container, type:

podman rm toolbox-root

You can change the registry, image, or container name used by toolbox by adding the following:

REGISTRY: Change the registry from which the toolbox image is pulled. For example:
REGISTRY=registry.example.com

IMAGE: Change the image that is used. For example, IMAGE=mysupport-tools

TOOLBOX_NAME: Change the name assigned to the running container. For example,
TOOLBOX_NAME=mytoolbox

The next time you run toolbox, the new values from the .toolboxrc file are used.

8.1.1. Opening privileges to the host

When you run other commands from within the support-tools container (or any privileged container),
they can behave differently than when run in a non-privileged container. Although sosreport can tell
when it is running in a container, other commands need to be told to act on the host system (the /host
directory). Here are examples of features that may or not be open to the host from a container:

Privileges: A privileged container (--privileged) runs applications as root user on the host by
default. The container has this ability because it runs with an unconfined_t SELinux security
context. So you can, for example, delete files and directories mounted from the host that are
owned by the root user.

Process tables: Unlike a regular container that only sees the processes running inside the
container, running a ps -e command within a privileged container (with --pid=host set) lets you
see every process running on the host. You can pass a process ID from the host to commands
that run in the privileged container (for example, kill <PID>). With some commands, however,
permissions issues could occur when they try to access processes from the container.

Network interfaces: By default, a container has only one external network interface and one
loopback network interface. With network interfaces open to the host (--net=host), you can
access those network interfaces directly from within the container.

Inter-process communications: The IPC facility on the host is accessible from within the
privileged container. You can run commands such as ipcs to see information about active
message queues, shared memory segments, and semaphore sets on the host.

8.2. RUNNING CONTAINERS WITH RUNLABELS

Some Red Hat images include labels that provide pre-set command lines for working with those images.
Using the podman container runlabel <label> command, you can tell podman to execute the
command defined in that <label> for the image. Existing runlabels include:

Red Hat Enterprise Linux 8 Building, running, and managing containers

68

install: Sets up the host system before executing the image. Typically, this results in creating
files and directories on the host that the container can access when it is run later.

run: Identifies podman command line options to use when running the container. Typically, the
options will open privileges on the host and mount the host content the container needs to
remain permanently on the host.

uninstall: Cleans up the host system after you are done running the container.

Red Hat images that have one or more runlabels include the rsyslog and support-tools images. The
following procedure illustrates how to use those images.

8.2.1. Running rsyslog with runlabels

The rhel8/rsyslog container image is made to run a containerized version of the rsyslogd daemon.
Inside the rsyslog image are install, run and uninstall runlabels. The following procedure steps you
through installing, running, and uninstalling the rsyslog image:

Procedure

1. Pull the rsyslog image:

podman pull registry.redhat.io/rhel8/rsyslog

2. Display (but do not yet run) the install runlabel for rsyslog:

podman container runlabel install --display rhel8/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel8/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel8/rsyslog:latest /bin/install.sh

This shows that the command will open privileges to the host, mount the host root filesystem on
/host in the container, and run an install.sh script.

3. Run the install runlabel for rsyslog:

podman container runlabel install rhel8/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel8/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel8/rsyslog:latest /bin/install.sh
Creating directory at /host//etc/pki/rsyslog
Creating directory at /host//etc/rsyslog.d
Installing file at /host//etc/rsyslog.conf
Installing file at /host//etc/sysconfig/rsyslog
Installing file at /host//etc/logrotate.d/syslog

This creates files on the host system that the rsyslog image will use later.

4. Display the run runlabel for rsyslog:

podman container runlabel run --display rhel8/rsyslog
command: podman run -d --privileged --name rsyslog --net=host --pid=host -v
/etc/pki/rsyslog:/etc/pki/rsyslog -v /etc/rsyslog.conf:/etc/rsyslog.conf -v
/etc/sysconfig/rsyslog:/etc/sysconfig/rsyslog -v /etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log

CHAPTER 8. RUNNING SPECIAL CONTAINER IMAGES

69

-v /var/lib/rsyslog:/var/lib/rsyslog -v /run:/run -v /etc/machine-id:/etc/machine-id -v
/etc/localtime:/etc/localtime -e IMAGE=registry.redhat.io/rhel8/rsyslog:latest -e
NAME=rsyslog --restart=always registry.redhat.io/rhel8/rsyslog:latest /bin/rsyslog.sh

This shows that the command opens privileges to the host and mount specific files and
directories from the host inside the container, when it launches the rsyslog container to run the
rsyslogd daemon.

5. Execute the run runlabel for rsyslog:

podman container runlabel run rhel8/rsyslog
command: podman run -d --privileged --name rsyslog --net=host --pid=host -v
/etc/pki/rsyslog:/etc/pki/rsyslog -v /etc/rsyslog.conf:/etc/rsyslog.conf -v
/etc/sysconfig/rsyslog:/etc/sysconfig/rsyslog -v /etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log
-v /var/lib/rsyslog:/var/lib/rsyslog -v /run:/run -v /etc/machine-id:/etc/machine-id -v
/etc/localtime:/etc/localtime -e IMAGE=registry.redhat.io/rhel8/rsyslog:latest -e
NAME=rsyslog --restart=always registry.redhat.io/rhel8/rsyslog:latest /bin/rsyslog.sh
28a0d719ff179adcea81eb63cc90fcd09f1755d5edb121399068a4ea59bd0f53

The rsyslog container opens privileges, mounts what it needs from the host, and runs the
rsyslogd daemon in the background (-d). The rsyslogd daemon begins gathering log
messages and directing messages to files in the /var/log directory.

6. Display the uninstall runlabel for rsyslog:

podman container runlabel uninstall --display rhel8/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel8/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel8/rsyslog:latest /bin/uninstall.sh

7. Run the uninstall runlabel for rsyslog:

podman container runlabel uninstall rhel8/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel8/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel8/rsyslog:latest /bin/uninstall.sh

In this case, the uninstall.sh script just removes the /etc/logrotate.d/syslog file. Note that it
does not clean up the configuration files.

8.2.2. Running support-tools with runlabels

The rhel8/support-tools container image is made to run tools such as sosreport and sos-collector to
help you analyze your host system. To simplify running the support-tools image, it includes a run
runlabel. The following procedure describes how to run the support-tools image:

Procedure

1. Pull the support-tools image:

podman pull registry.redhat.io/rhel8/support-tools

2. Display (but do not yet run) the run runlabel for support-tools:

Red Hat Enterprise Linux 8 Building, running, and managing containers

70

podman container runlabel run --display rhel8/support-tools
command: podman run -it --name support-tools --privileged --ipc=host --net=host --pid=host -
e HOST=/host -e NAME=support-tools -e IMAGE=registry.redhat.io/rhel8/support-tools:latest
-v /run:/run -v /var/log:/var/log -v /etc/machine-id:/etc/machine-id -v
/etc/localtime:/etc/localtime -v /:/host registry.redhat.io/rhel8/support-tools:latest

This shows that the command mounts directories and opens privileges and namespaces (ipc,
net, and pid) to the host system. It assigns the host’s root file system to the /host directory in
the container.

3. Execute the run runlabel for support-tools:

podman container runlabel run rhel8/support-tools
command: podman run -it --name support-tools --privileged --ipc=host --net=host --pid=host -
e HOST=/host -e NAME=support-tools -e IMAGE=registry.redhat.io/rhel8/support-tools:latest
-v /run:/run -v /var/log:/var/log -v /etc/machine-id:/etc/machine-id -v
/etc/localtime:/etc/localtime -v /:/host registry.redhat.io/rhel8/support-tools:latest
bash-4.4#

This opens a bash shell inside the support-tools container. You can now run reports or debug
tools against the host system (/host).

4. To leave the container and return to the host, type exit.

exit

CHAPTER 8. RUNNING SPECIAL CONTAINER IMAGES

71

CHAPTER 9. PORTING CONTAINERS TO OPENSHIFT USING
PODMAN

This chapter describes how to generate portable descriptions of containers and pods using the YAML
("YAML Ain’t Markup Language") format. The YAML is a text format used to describe the configuration
data.

The YAML files are:

Readable.

Easy to generate.

Portable between environments (for example between RHEL and OpenShift).

Portable between programming languages.

Convenient to use (no need to add all the parameters to the command line).

Reasons to use YAML files:

1. You can re-run a local orchestrated set of containers and pods with minimal input required
which can be useful for iterative development.

2. You can run the same containers and pods on another machine. For example, to run an
application in an OpenShift environment and to ensure that the application is working correctly.
You can use podman generate kube command to generate a Kubernetes YAML file. Then, you
can use podman play command to test the creation of pods and containers on your local
system before you transfer the generated YAML files to the Kubernetes or OpenShift
environment. Using the podman play command, you can also recreate pods and containers
originally created in OpenShift or Kubernetes environments.

9.1. GENERATING A KUBERNETES YAML FILE USING PODMAN

This procedure describes how to create a pod with one container and generate the Kubernetes YAML
file using the podman generate kube command.

Prerequisites

The pod has been created. For details, see Creating pods.

Procedure

1. List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD
5df5c48fea87 registry.access.redhat.com/ubi8/ubi:latest /bin/bash Less than a second ago
Up Less than a second ago myubi 223df6b390b4
3afdcd93de3e k8s.gcr.io/pause:3.1 Less than a second ago Up Less
than a second ago 223df6b390b4-infra 223df6b390b4

2. Use the pod name or ID to generate the Kubernetes YAML file:

Red Hat Enterprise Linux 8 Building, running, and managing containers

72

$ podman generate kube mypod > mypod.yaml

Note that the podman generate command does not reflect any Logical Volume Manager
(LVM) logical volumes or physical volumes that might be attached to the container.

3. Display the mypod.yaml file:

$ cat mypod.yaml
Generation of Kubernetes YAML is still under development!
#
Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-1.6.4
apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: "2020-06-09T10:31:56Z"
 labels:
app: mypod
 name: mypod
spec:
 containers:
 - command:
 - /bin/bash
 env:
 - name: PATH
 value: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - name: TERM
 value: xterm
 - name: HOSTNAME
 - name: container
 value: oci
 image: registry.access.redhat.com/ubi8/ubi:latest
 name: myubi
 resources: {}
 securityContext:
 allowPrivilegeEscalation: true
 capabilities: {}
 privileged: false
 readOnlyRootFilesystem: false
 tty: true
 workingDir: /
status: {}

Additional resources

man podman-generate-kube

Podman: Managing pods and containers in a local container runtime article

9.2. GENERATING A KUBERNETES YAML FILE IN OPENSHIFT
ENVIRONMENT

In the OpenShift environment, use the oc create command to generate the YAML files describing your

CHAPTER 9. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

73

In the OpenShift environment, use the oc create command to generate the YAML files describing your
application.

Procedure

Generate the YAML file for your myapp application:

$ oc create myapp --image=me/myapp:v1 -o yaml --dry-run > myapp.yaml

The oc create command creates and run the myapp image. The object is printed using the --
dry-run option and redirected into the myapp.yaml output file.

NOTE

In the Kubernetes environment, you can use the kubectl create command with the same
flags.

9.3. STARTING CONTAINERS AND PODS WITH PODMAN

With the generated YAML files, you can automatically start containers and pods in any environment.
Note that the YAML files must not be generated by the Podman. The podman play kube command
allows you to recreate pods and containers based on the YAML input file.

Procedure

1. Create the pod and the container from the mypod.yaml file:

$ podman play kube mypod.yaml
Pod:
b8c5b99ba846ccff76c3ef257e5761c2d8a5ca4d7ffa3880531aec79c0dacb22
Container:
848179395ebd33dd91d14ffbde7ae273158d9695a081468f487af4e356888ece

2. List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
b8c5b99ba846 mypod Running 19 seconds ago 2 aa4220eaf4bb

3. List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD
848179395ebd registry.access.redhat.com/ubi8/ubi:latest /bin/bash About a minute ago Up
About a minute ago myubi b8c5b99ba846
aa4220eaf4bb k8s.gcr.io/pause:3.1 About a minute ago Up About a
minute ago b8c5b99ba846-infra b8c5b99ba846

The pod IDs from podman ps command matches the pod ID from the podman pod ps
command.

Additional resources

Red Hat Enterprise Linux 8 Building, running, and managing containers

74

man podman-play-kube

Podman can now ease the transition to Kubernetes and CRI-O article

9.4. STARTING CONTAINERS AND PODS IN OPENSHIFT
ENVIRONMENT

You can use the oc create command to create pods and containers in the OpenShift environment.

Procedure

Create a pod from the YAML file in the OpenShift environment:

$ oc create -f mypod.yaml

NOTE

In the Kubernetes environment, you can use the kubectl create command with the same
flags.

CHAPTER 9. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

75

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING
PODMAN

Podman (Pod Manager) is a fully featured container engine that is a simple daemonless tool. Podman
provides a Docker-CLI comparable command line that eases the transition from other container engines
and allows the management of pods, containers and images.

Podman was not originally designed to bring up an entire Linux system or manage services for such
things as start-up order, dependency checking, and failed service recovery. That is the job of a full-
blown initialization system like systemd. Red Hat has become a leader in integrating containers with
systemd, so that OCI and Docker-formatted containers built by Podman can be managed in the same
way that other services and features are managed in a Linux system. You can use the systemd
initialization service to work with pods and containers. You can use the podman generate systemd
command to generate a systemd unit file for containers and pods.

With systemd unit files, you can:

Set up a container or pod to start as a systemd service.

Define the order in which the containerized service runs and check for dependencies (for
example making sure another service is running, a file is available or a resource is mounted).

Control the state of the systemd system using the systemctl command.

This chapter provides you with information on how to generate portable descriptions of containers and
pods using systemd unit files.

10.1. ENABLING SYSTEMD SERVICES

When enabling the service, you have different options.

Procedure

Enable the service:

To enable a service at system start, no matter if user is logged in or not, enter:

systemctl enable <service>

You have to copy the systemd unit files to the /etc/systemd/system directory.

To start a service at user login and stop it at user logout, enter:

$ systemctl --user enable <service>

You have to copy the systemd unit files to the $HOME/.config/systemd/user directory.

To enable users to start a service at system start and persist over logouts, enter:

loginctl enable-linger <username>

Additional resources

man systemctl

Red Hat Enterprise Linux 8 Building, running, and managing containers

76

man loginctl

Managing services with systemd chapter

10.2. GENERATING A SYSTEMD UNIT FILE USING PODMAN

Podman allows systemd to control and manage container processes. You can generate a systemd unit
file for the existing containers and pods using podman generate systemd command. It is
recommended to use podman generate systemd because the generated units files change frequently
(via updates to Podman) and the podman generate systemd ensures that you get the latest version of
unit files.

Procedure

1. Create a container (for example myubi):

$ podman create --name myubi registry.access.redhat.com/ubi8:latest sleep infinity
0280afe98bb75a5c5e713b28de4b7c5cb49f156f1cce4a208f13fee2f75cb453

2. Use the container name or ID to generate the systemd unit file and direct it into the
~/.config/systemd/user/container-myubi.service file:

$ podman generate systemd --name myubi > ~/.config/systemd/user/container-myubi.service

Verification steps

To display the content of generated systemd unit file, enter:

$ cat ~/.config/systemd/user/container-myubi.service
container-myubi.service
autogenerated by Podman 2.0.0
Tue Aug 11 10:51:04 CEST 2020

[Unit]
Description=Podman container-myubi.service
Documentation=man:podman-generate-systemd(1)
Wants=network.target
After=network-online.target

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
ExecStart=/usr/bin/podman start myubi
ExecStop=/usr/bin/podman stop -t 10 myubi
ExecStopPost=/usr/bin/podman stop -t 10 myubi
PIDFile=/run/user/1000/containers/overlay-
containers/0280afe98bb75a5c5e713b28de4b7c5cb49f156f1cce4a208f13fee2f75cb453/userdat
a/conmon.pid
KillMode=none
Type=forking

[Install]
WantedBy=multi-user.target default.target

The Restart=on-failure line sets the restart policy and instructs systemd to restart when the

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN

77

The Restart=on-failure line sets the restart policy and instructs systemd to restart when the
service cannot be started or stopped cleanly, or when the process exits non-zero.

The ExecStart line describes how we start the container.

The ExecStop line describes how we stop and remove the container.

Additional resources

Running containers with Podman and shareable systemd services article

10.3. AUTO-GENERATING A SYSTEMD UNIT FILE USING PODMAN

By default, Podman generates a unit file for existing containers or pods. You can generate more
portable systemd unit files using the podman generate systemd --new. The --new flag instructs
Podman to generate unit files that create, start and remove containers.

Procedure

1. Pull the image you want to use on your system. For example, to pull the httpd-24 image:

podman pull registry.access.redhat.com/ubi8/httpd-24

2. List all images available on your system:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 2 weeks ago 462
MB

3. Create the httpd container:

podman create --name httpd -p 8080:8080 registry.access.redhat.com/ubi8/httpd-24
cdb9f981cf143021b1679599d860026b13a77187f75e46cc0eac85293710a4b1

4. Optional. Verify the container has been created:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
cdb9f981cf14 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-http... 5 minutes
ago Created 0.0.0.0:8080->8080/tcp httpd

5. Generate a systemd unit file for the httpd container:

podman generate systemd --new --files --name httpd
/root/container-httpd.service

6. Display the content of the generated container-httpd.service systemd unit file:

cat /root/container-httpd.service
container-httpd.service
autogenerated by Podman 3.2.3

Red Hat Enterprise Linux 8 Building, running, and managing containers

78

Tue Aug 24 09:40:25 EDT 2021

[Unit]
Description=Podman container-httpd.service
Documentation=man:podman-generate-systemd(1)
Wants=network.target
After=network-online.target
RequiresMountsFor=%t/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStartPre=/bin/rm -f %t/container-httpd.pid %t/container-httpd.ctr-id
ExecStart=/usr/bin/podman run --conmon-pidfile %t/container-httpd.pid --cidfile %t/container-
httpd.ctr-id --cgroups=no-conmon -d --replace --name httpd -p 8080:8080
registry.access.redhat.com/ubi8/httpd-24
ExecStop=/usr/bin/podman stop --ignore --cidfile %t/container-httpd.ctr-id -t 10
ExecStopPost=/usr/bin/podman rm --ignore -f --cidfile %t/container-httpd.ctr-id
PIDFile=%t/container-httpd.pid
Type=forking

[Install]
WantedBy=multi-user.target default.target

NOTE

Unit files generated using the --new option do not expect containers and pods to exist.
Therefore, they perform the podman run command when starting the service (see the
ExecStart line) instead of the podman start command. For example, see Section
Generating a systemd unit file using Podman .

The podman run command uses the following command-line options:

The --conmon-pidfile option points to a path to store the process ID for the
conmon process running on the host. The conmon process terminates with the
same exit status as the container, which allows systemd to report the correct service
status and restart the container if needed.

The --cidfile option points to the path that stores the container ID.

The %t is the path to the run time directory root, for example /run/user/$UserID.

The %n is the full name of the service.

7. Copy unit files to /usr/lib/systemd/system for installing them as a root user:

cp -Z container-httpd.service /etc/systemd/system

8. Enable and start the container-busybox.service:

systemctl daemon-reload
systemctl enable --now container-httpd.service
Created symlink /etc/systemd/system/multi-user.target.wants/container-httpd.service →

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN

79

/etc/systemd/system/container-httpd.service.
Created symlink /etc/systemd/system/default.target.wants/container-httpd.service →
/etc/systemd/system/container-httpd.service.

Verification steps

Check the status of the container-httpd.service:

systemctl status container-httpd.service
 ● container-httpd.service - Podman container-httpd.service
 Loaded: loaded (/etc/systemd/system/container-httpd.service; enabled; vendor preset:
disabled)
 Active: active (running) since Tue 2021-08-24 09:53:40 EDT; 1min 5s ago
 Docs: man:podman-generate-systemd(1)
 Process: 493317 ExecStart=/usr/bin/podman run --conmon-pidfile /run/container-
httpd.pid --cidfile /run/container-httpd.ctr-id --cgroups=no-conmon -d --repla>
 Process: 493315 ExecStartPre=/bin/rm -f /run/container-httpd.pid /run/container-httpd.ctr-
id (code=exited, status=0/SUCCESS)
 Main PID: 493435 (conmon)
 ...

Additional resources

Improved Systemd Integration with Podman 2.0 article

Managing services with systemd chapter

10.4. AUTO-STARTING CONTAINERS USING SYSTEMD

You can control the state of the systemd system and service manager using the systemctl command.
This section shows the general procedure on how to enable, start, stop the service as a non-root user. To
install the service as a root user, omit the --user option.

Procedure

1. Reload systemd manager configuration:

systemctl --user daemon-reload

2. Enable the service container.service and start it at boot time:

systemctl --user enable container.service

3. To start the service immediately:

systemctl --user start container.service

4. Check the status of the service:

$ systemctl --user status container.service
● container.service - Podman container.service
 Loaded: loaded (/home/user/.config/systemd/user/container.service; enabled; vendor
preset: enabled)

Red Hat Enterprise Linux 8 Building, running, and managing containers

80

 Active: active (running) since Wed 2020-09-16 11:56:57 CEST; 8s ago
 Docs: man:podman-generate-systemd(1)
 Process: 80602 ExecStart=/usr/bin/podman run --conmon-pidfile
//run/user/1000/container.service-pid --cidfile //run/user/1000/container.service-cid -d ubi8-
minimal:>
 Process: 80601 ExecStartPre=/usr/bin/rm -f //run/user/1000/container.service-pid
//run/user/1000/container.service-cid (code=exited, status=0/SUCCESS)
 Main PID: 80617 (conmon)
 CGroup: /user.slice/user-1000.slice/user@1000.service/container.service
 ├─ 2870 /usr/bin/podman
 ├─80612 /usr/bin/slirp4netns --disable-host-loopback --mtu 65520 --enable-sandbox -
-enable-seccomp -c -e 3 -r 4 --netns-type=path /run/user/1000/netns/cni->
 ├─80614 /usr/bin/fuse-overlayfs -o
lowerdir=/home/user/.local/share/containers/storage/overlay/l/YJSPGXM2OCDZPLMLXJOW3N
RF6Q:/home/user/.local/share/contain>
 ├─80617 /usr/bin/conmon --api-version 1 -c
cbc75d6031508dfd3d78a74a03e4ace1732b51223e72a2ce4aa3bfe10a78e4fa -u
cbc75d6031508dfd3d78a74a03e4ace1732b51223e72>
 └─cbc75d6031508dfd3d78a74a03e4ace1732b51223e72a2ce4aa3bfe10a78e4fa
 └─80626 /usr/bin/coreutils --coreutils-prog-shebang=sleep /usr/bin/sleep 1d

You can check if the service is enabled using the systemctl is-enabled container.service
command.

Verification steps

List containers that are running or have exited:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f20988d59920 registry.access.redhat.com/ubi8-minimal:latest top 12 seconds ago Up 11
seconds ago funny_zhukovsky

NOTE

To stop container.service, enter:

systemctl --user stop container.service

Additional resources

man systemctl

Running containers with Podman and shareable systemd services article

Managing services with systemd chapter

10.5. AUTO-STARTING PODS USING SYSTEMD

You can start multiple containers as systemd services. Note that the systemctl command should only
be used on the pod and you should not start or stop containers individually via systemctl, as they are
managed by the pod service along with the internal infra-container.

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN

81

Procedure

1. Create an empty pod, for example named systemd-pod:

$ podman pod create --name systemd-pod
11d4646ba41b1fffa51c108cbdf97cfab3213f7bd9b3e1ca52fe81b90fed5577

2. List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
11d4646ba41b systemd-pod Created 40 seconds ago 1 8a428b257111
11d4646ba41b1fffa51c108cbdf97cfab3213f7bd9b3e1ca52fe81b90fed5577

3. Create two containers in the empty pod. For example, to create container0 and container1 in
systemd-pod:

$ podman create --pod systemd-pod --name container0 registry.access.redhat.com/ubi8 top
$ podman create --pod systemd-pod --name container1 registry.access.redhat.com/ubi8 top

4. List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
24666f47d9b2 registry.access.redhat.com/ubi8:latest top 3 minutes ago Created
container0 3130f724e229 systemd-pod
56eb1bf0cdfe k8s.gcr.io/pause:3.2 4 minutes ago Created
3130f724e229-infra 3130f724e229 systemd-pod
62118d170e43 registry.access.redhat.com/ubi8:latest top 3 seconds ago Created
container1 3130f724e229 systemd-pod

5. Generate the systemd unit file for the new pod:

$ podman generate systemd --files --name systemd-pod
/home/user1/pod-systemd-pod.service
/home/user1/container-container0.service
/home/user1/container-container1.service

Note that three systemd unit files are generated, one for the systemd-pod pod and two for the
containers container0 and container1.

6. Display pod-systemd-pod.service unit file:

$ cat pod-systemd-pod.service
pod-systemd-pod.service
autogenerated by Podman 2.0.3
Tue Jul 28 14:00:46 EDT 2020

[Unit]
Description=Podman pod-systemd-pod.service
Documentation=man:podman-generate-systemd(1)
Wants=network.target

Red Hat Enterprise Linux 8 Building, running, and managing containers

82

After=network-online.target
Requires=container-container0.service container-container1.service
Before=container-container0.service container-container1.service

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
ExecStart=/usr/bin/podman start c852fbaba568-infra
ExecStop=/usr/bin/podman stop -t 10 c852fbaba568-infra
ExecStopPost=/usr/bin/podman stop -t 10 c852fbaba568-infra
PIDFile=/run/user/1000/containers/overlay-
containers/a7ff86382608add27a03ac2166d5d0164199f01eadf80b68b06a406c195105fc/userd
ata/conmon.pid
KillMode=none
Type=forking

[Install]
WantedBy=multi-user.target default.target

The Requires line in the [Unit] section defines dependencies on container-
container0.service and container-container1.service unit files. Both unit files will be
activated.

The ExecStart and ExecStop lines in the [Service] section start and stop the infra-
container, respectively.

7. Display container-container0.service unit file:

$ cat container-container0.service
container-container0.service
autogenerated by Podman 2.0.3
Tue Jul 28 14:00:46 EDT 2020

[Unit]
Description=Podman container-container0.service
Documentation=man:podman-generate-systemd(1)
Wants=network.target
After=network-online.target
BindsTo=pod-systemd-pod.service
After=pod-systemd-pod.service

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
ExecStart=/usr/bin/podman start container0
ExecStop=/usr/bin/podman stop -t 10 container0
ExecStopPost=/usr/bin/podman stop -t 10 container0
PIDFile=/run/user/1000/containers/overlay-
containers/12e85378f2854b8283f791974494a02aa6c92630d76d1050237839b61508a008/user
data/conmon.pid
KillMode=none
Type=forking

[Install]
WantedBy=multi-user.target default.target

The BindsTo line line in the [Unit] section defines the dependency on the pod-systemd-

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN

83

The BindsTo line line in the [Unit] section defines the dependency on the pod-systemd-
pod.service unit file

The ExecStart and ExecStop lines in the [Service] section start and stop the container0
respectively.

8. Display container-container1.service unit file:

$ cat container-container1.service

9. Copy all the generated files to $HOME/.config/systemd/user for installing as a non-root user:

$ cp pod-systemd-pod.service container-container0.service container-container1.service
$HOME/.config/systemd/user

10. Enable the service and start at user login:

$ systemctl enable --user pod-systemd-pod.service
Created symlink /home/user1/.config/systemd/user/multi-user.target.wants/pod-systemd-
pod.service → /home/user1/.config/systemd/user/pod-systemd-pod.service.
Created symlink /home/user1/.config/systemd/user/default.target.wants/pod-systemd-
pod.service → /home/user1/.config/systemd/user/pod-systemd-pod.service.

Note that the service stops at user logout.

Verification steps

Check if the service is enabled:

$ systemctl is-enabled pod-systemd-pod.service
enabled

Additional resources

man podman-create

man podman-generate-systemd

man systemctl

Running containers with Podman and shareable systemd services article

Managing services with systemd chapter

10.6. AUTO-UPDATING CONTAINERS USING PODMAN

The podman auto-update command allows you to automatically update containers according to their
auto-update policy. The podman auto-update command updates services when the container image is
updated on the registry. To use auto-updates, containers must be created with the --label
"io.containers.autoupdate=image" label and run in a systemd unit generated by podman generate
systemd --new command.

Podman searches for running containers with the "io.containers.autoupdate" label set to "image" and
communicates to the container registry. If the image has changed, Podman restarts the corresponding

Red Hat Enterprise Linux 8 Building, running, and managing containers

84

systemd unit to stop the old container and create a new one with the new image. As a result, the
container, its environment, and all dependencies, are restarted.

Prerequisites

The container-tools module is installed.

yum module install -y container-tools

Procedure

1. Start a myubi container based on the registry.access.redhat.com/ubi8/ubi-init image:

podman run --label "io.containers.autoupdate=image" \
--name myubi -dt registry.access.redhat.com/ubi8/ubi-init top
bc219740a210455fa27deacc96d50a9e20516492f1417507c13ce1533dbdcd9d

2. Optional: List containers that are running or have exited:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
76465a5e2933 registry.access.redhat.com/ubi8/ubi-init:latest top 24 seconds ago Up 23
seconds ago myubi

3. Generate a systemd unit file for the myubi container:

podman generate systemd --new --files --name myubi
/root/container-myubi.service

4. Copy unit files to /usr/lib/systemd/system for installing it as a root user:

cp -Z ~/container-myubi.service /usr/lib/systemd/system

5. Reload systemd manager configuration:

systemctl daemon-reload

6. Start and check the status of a container:

systemctl start container-myubi.service
systemctl status container-myubi.service

7. Auto-update the container:

podman auto-update

Additional resources

Improved Systemd Integration with Podman 2.0 article

Running containers with Podman and shareable systemd services article

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN

85

Managing Services with systemd chapter

10.7. AUTO-UPDATING CONTAINERS USING SYSTEMD

As mentioned in section Auto-updating containers using Podman , you can update the container using
the podman auto-update command. It integrates into custom scripts and can be invoked when needed.
Another way to auto update the containers is to use the pre-installed podman-auto-update.timer and
podman-auto-update.service systemd service. The podman-auto-update.timer can be configured to
trigger auto updates at a specific date or time. The podman-auto-update.service can further be
started by the systemctl command or be used as a dependency by other systemd services. As a result,
auto updates based on time and events can be triggered in various ways to meet individual needs and
use cases.

Prerequisites

The container-tools module is installed.

 # yum module install -y container-tools

Procedure

1. Display the podman-auto-update.service unit file:

cat /usr/lib/systemd/system/podman-auto-update.service

[Unit]
Description=Podman auto-update service
Documentation=man:podman-auto-update(1)
Wants=network.target
After=network-online.target

[Service]
Type=oneshot
ExecStart=/usr/bin/podman auto-update

[Install]
WantedBy=multi-user.target default.target

2. Display the podman-auto-update.timer unit file:

cat /usr/lib/systemd/system/podman-auto-update.timer

[Unit]
Description=Podman auto-update timer

[Timer]
OnCalendar=daily
Persistent=true

[Install]
WantedBy=timers.target

In this example, the podman auto-update command is launched daily at midnight.

Red Hat Enterprise Linux 8 Building, running, and managing containers

86

3. Enable the podman-auto-update.timer service at system start:

systemctl enable podman-auto-update.timer

4. Start the systemd service:

systemctl start podman-auto-update.timer

5. Optional: List all timers:

systemctl list-timers --all
NEXT LEFT LAST PASSED UNIT
ACTIVATES
Wed 2020-12-09 00:00:00 CET 9h left n/a n/a podman-auto-
update.timer podman-auto-update.service

You can see that podman-auto-update.timer activates the podman-auto-update.service.

Additional resources

Improved Systemd Integration with Podman 2.0 article

Running containers with Podman and shareable systemd services article

Managing Services with systemd chapter

CHAPTER 10. PORTING CONTAINERS TO SYSTEMD USING PODMAN

87

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH
Buildah facilitates building OCI container images that meet the OCI Runtime Specification. With
Buildah, you can create a working container, either from scratch or using an image as a starting point.
You can create an image either from a working container or via the instructions in a Dockerfile. You can
mount and unmount a working container’s root filesystem.

11.1. THE BUILDAH TOOL

Using Buildah is different from building images with the docker command in the following ways:

No Daemon

No container runtime is needed to use Buildah.

Base image or scratch

You can build an image based on another container or start with an empty image (scratch).

Build tools are external

Does not include build tools within the image itself. As a result, Buildah:

Reduces the size of built images.

Increase security of images by excluding software (e.g. gcc, make, and yum) from the
resulting image.

Allows to transport the images using fewer resources because of the reduced image size.

Compatibility

Buildah supports building container images with Dockerfiles allowing for an easy transition from
Docker to Buildah.

NOTE

The containers-storage location that Buildah uses by default is the same as the CRI-O
container engine uses for storing local copies of images. As a result, the images pulled
from a registry by either CRI-O or Buildah, or committed by the buildah command, are
stored in the same directory structure. Currently, however, CRI-O and Buildah cannot
share containers, though they can share images.

Additional resources

Buildah - a tool that facilitates building Open Container Initiative (OCI) container images

Buildah Tutorial 1: Building OCI container images

Buildah Tutorial 2: Using Buildah with container registries

Building with Buildah: Dockerfiles, command line, or scripts

How rootless Buildah works: Building containers in unprivileged environments

11.2. INSTALLING BUILDAH

Install the Buildah tool using the yum command.

Red Hat Enterprise Linux 8 Building, running, and managing containers

88

Procedure

Install the Buildah tool:

yum -y install buildah

Verification

Display the help message:

buildah -h

11.3. GETTING IMAGES WITH BUILDAH

Use the buildah from command to create a new working container from scratch or based on a specified
image as a starting point.

Procedure

Create a new working container based on the registry.redhat.io/ubi8/ubi image:

buildah from registry.access.redhat.com/ubi8/ubi
Getting image source signatures
Copying blob…
Writing manifest to image destination
Storing signatures
ubi-working-container

Verification

1. List all images in local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest 272209ff0ae5 2 weeks ago 234 MB

2. List the working containers and their base images:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
01eab9588ae1 * 272209ff0ae5 registry.access.redhat.com/ub... ubi-working-container

Additional resources

buildah-from man page

buildah-images man page

buildah.containers man page

11.4. RUNNING COMMANDS INSIDE OF THE CONTAINER

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH

89

Use the buildah run command to execute a command from the container.

Prerequisites

A pulled image is available on the local system.

Procedure

Display the operating system version:

buildah run ubi-working-container cat /etc/redhat-release
Red Hat Enterprise Linux release 8.4 (Ootpa)

Additional resources

buildah-run man page

11.5. BUILDING AN IMAGE FROM A DOCKERFILE WITH BUILDAH

Use the buildah bud command to build an image using instructions from a Containerfile or a
Dockerfile.

NOTE

The buildah bud command uses a Containerfile if found in the context directory, if it is
not found the buildah bud command uses a Dockerfile; otherwise any file can be
specified with the --file option. The available commands that are usable inside a
Containerfile and a Dockerfile are equivalent.

Procedure

1. Create a Containerfile:

cat Containerfile
FROM registry.access.redhat.com/ubi8/ubi
ADD myecho /usr/local/bin
ENTRYPOINT "/usr/local/bin/myecho"

2. Create a myecho script:

cat myecho
echo "This container works!"

3. Change the access permissions of myecho script:

chmod 755 myecho

4. Build the myecho image using Containerfile in the current directory:

buildah bud -t myecho .
STEP 1: FROM registry.access.redhat.com/ubi8/ubi
STEP 2: ADD myecho /usr/local/bin

Red Hat Enterprise Linux 8 Building, running, and managing containers

90

STEP 3: ENTRYPOINT "/usr/local/bin/myecho"
STEP 4: COMMIT myecho
...
Storing signatures

Verification

1. List all images:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myecho latest b28cd00741b3 About a minute ago 234 MB

2. Run the myecho container based on the localhost/myecho image:

podman run --name=myecho localhost/myecho
This container works!

3. List all containers:

podman ps -a
0d97517428d localhost/myecho 12 seconds ago Exited (0) 13
seconds ago myecho

Additional resources

buildah-bud man page

11.6. INSPECTING CONTAINERS AND IMAGES WITH BUILDAH

Use the buildah inspect command to display information about a container or image.

Prerequisites

An image was built using instructions from Containerfile. For details, see section Building an
image from a Dockerfile with Buildah.

Procedure

Inspect the image:

To inspect the myecho image, enter:

buildah inspect localhost/myecho
 {
 "Type": "buildah 0.0.1",
 "FromImage": "localhost/myecho:latest",
 "FromImageID":
"b28cd00741b38c92382ee806e1653eae0a56402bcd2c8d31bdcd36521bc267a4",
 "FromImageDigest":
"sha256:0f5b06cbd51b464fabe93ce4fe852a9038cdd7c7b7661cd7efef8f9ae8a59585",
 "Config":
 ...

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH

91

 "Entrypoint": [
 "/bin/sh",
 "-c",
 "\"/usr/local/bin/myecho\""
],
 ...
}

To inspect the working container from the myecho image:

i. Create a working container based on the localhost/myecho image:

buildah from localhost/myecho

ii. Inspect the myecho-working-container container:

buildah inspect ubi-working-container
{
 "Type": "buildah 0.0.1",
 "FromImage": "registry.access.redhat.com/ubi8/ubi:latest",
 "FromImageID":
"272209ff0ae5fe54c119b9c32a25887e13625c9035a1599feba654aa7638262d",
 "FromImageDigest":
"sha256:77623387101abefbf83161c7d5a0378379d0424b2244009282acb39d42f1fe13
",
 "Config":
 ...
"Container": "ubi-working-container",
"ContainerID":
"01eab9588ae1523746bb706479063ba103f6281ebaeeccb5dc42b70e450d5ad0",
"ProcessLabel": "system_u:system_r:container_t:s0:c162,c1000",
"MountLabel": "system_u:object_r:container_file_t:s0:c162,c1000",
...
}

Additional resources

buildah-inspect man page

11.7. MODIFYING A CONTAINER USING BUILDAH MOUNT

Use the buildah inspect command to display information about a container or image.

Prerequisites

An image was built using instructions from Containerfile. For details, see section Building an
image from a Dockerfile with Buildah.

Procedure

1. Create a working container based on the registry.access.redhat.com/ubi8/ubi image and save
the name of the container to the mycontainer variable:

mycontainer=$(buildah from localhost/myecho)

Red Hat Enterprise Linux 8 Building, running, and managing containers

92

echo $mycontainer
myecho-working-container

2. Mount the myecho-working-container container and save the mount point path to the
mymount variable:

mymount=$(buildah mount $mycontainer)

echo $mymount
/var/lib/containers/storage/overlay/c1709df40031dda7c49e93575d9c8eebcaa5d8129033a58e5
b6a95019684cc25/merged

3. Modify the myecho script and make it executable:

echo 'echo "We modified this container."' >> $mymount/usr/local/bin/myecho
chmod +x $mymount/usr/local/bin/myecho

4. Create the myecho2 image from the myecho-working-container container:

buildah commit $mycontainer containers-storage:myecho2

Verification

1. List all images in local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/myecho2 latest 4547d2c3e436 4 minutes ago 234 MB
localhost/myecho latest b28cd00741b3 56 minutes ago 234 MB

2. Run the myecho2 container based on the docker.io/library/myecho2 image:

podman run --name=myecho2 docker.io/library/myecho2
This container works!
We even modified it.

Additional resources

buildah-mount man page

buildah-commit man page

11.8. MODIFYING A CONTAINER USING BUILDAH COPY AND BUILDAH
CONFIG

Use buildah copy command to copy files to a container without mounting it. You can then configure
the container using the buildah config command to run the script you created by default.

Prerequisites

An image was built using instructions from Containerfile. For details, see section Building an

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH

93

An image was built using instructions from Containerfile. For details, see section Building an
image from a Dockerfile with Buildah.

Procedure

1. Create a script named newecho and make it executable:

cat newecho
echo "I changed this container"
chmod 755 newecho

2. Create a new working container:

buildah from myecho:latest
myecho-working-container-2

3. Copy the newecho script to /usr/local/bin directory inside the container:

buildah copy myecho-working-container-2 newecho /usr/local/bin

4. Change the configuration to use the newecho script as the new entrypoint:

buildah config --entrypoint "/bin/sh -c /usr/local/bin/newecho" myecho-working-container-2

5. Optional. Run the myecho-working-container-2 container, the newecho script should be
executed:

buildah run myecho-working-container-2 -- sh -c '/usr/local/bin/newecho'
I changed this container

6. Commit the myecho-working-container-2 container to a new image called mynewecho:

buildah commit myecho-working-container-2 containers-storage:mynewecho

Verification

List all images in local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/mynewecho latest fa2091a7d8b6 8 seconds ago 234 MB

Additional resources

buildah-copy man page

buildah-config man page

buildah-commit man page

buildah-run man page

Red Hat Enterprise Linux 8 Building, running, and managing containers

94

11.9. CREATING IMAGES FROM SCRATCH WITH BUILDAH

Instead of starting with a base image, you can create a new container that holds only a minimal amount
of container metadata.

When creating an image from scratch container, consider: A * You can copy the executable with no
dependencies into the scratch image and make a few configuration settings to get a minimal container
to work. * You must initialize an RPM database and add a release package in the container to use tools
like yum or rpm. * If you are adding a lot of packages, consider using the standard UBI or minimal UBI
images instead of scratch images.

Procedure

This procedure adds a web service httpd to a container and configures it to run.

1. Create an empty container:

buildah from scratch
working-container

2. Mount the working-container container and save the mount point path to the scratchmnt
variable:

scratchmnt=$(buildah mount working-container)

echo $scratchmnt
/var/lib/containers/storage/overlay/be2eaecf9f74b6acfe4d0017dd5534fde06b2fa8de9ed875691
f6ccc791c1836/merged

3. Initialize an RPM database within the scratch image and add the redhat-release package:

yum install -y --releasever=8 --installroot=$scratchmnt redhat-release

4. Install the httpd service to the scratch directory:

yum install -y --setopt=reposdir=/etc/yum.repos.d \
 --installroot=$scratchmnt \
 --setopt=cachedir=/var/cache/dnf httpd

5. Create the $scratchmnt/var/www/html/index.html file:

mkdir -p $scratchmnt/var/www/html
echo "Your httpd container from scratch works!" > $scratchmnt/var/www/html/index.html

6. Configure working-container to run the httpd daemon directly from the container:

buildah config --cmd "/usr/sbin/httpd -DFOREGROUND" working-container
buildah config --port 80/tcp working-container
buildah commit working-container localhost/myhttpd:latest

Verification

1. List all images in local storage:

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH

95

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myhttpd latest 08da72792f60 2 minutes ago 121 MB

2. Run the localhost/myhttpd image and and configure port mappings between the container and
the host system:

podman run -p 8080:80 -d --name myhttpd 08da72792f60

3. Test the web server:

curl localhost:8080
Your httpd container from scratch works!

Additional resources

buildah-config man page

buildah-commit man page

11.10. PUSHING CONTAINERS TO A PRIVATE REGISTRY

Use buildah push command to push an image from local storage to the public or private repositories.

Prerequisites

An image was built using instructions from Containerfile. For details, see section Building an
image from a Dockerfile with Buildah.

Procedure

1. Create the local registry on your machine:

podman run -d -p 5000:5000 registry:2

2. Push the myecho:latest image to the localhost registry:

buildah push --tls-verify=false myecho:latest localhost:5000/myecho:latest
Getting image source signatures
Copying blob sha256:e4efd0...
...
Writing manifest to image destination
Storing signatures

Verification

1. List all images in the localhost repository:

curl http://localhost:5000/v2/_catalog
{"repositories":["myecho2]}

Red Hat Enterprise Linux 8 Building, running, and managing containers

96

curl http://localhost:5000/v2/myecho2/tags/list
{"name":"myecho","tags":["latest"]}

2. Inspect the docker://localhost:5000/myecho:latest image:

skopeo inspect --tls-verify=false docker://localhost:5000/myecho:latest | less
{
 "Name": "localhost:5000/myecho",
 "Digest": "sha256:8999ff6050...",
 "RepoTags": [
 "latest"
],
 "Created": "2021-06-28T14:44:05.919583964Z",
 "DockerVersion": "",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.redhat.io",
 ...
}

3. Pull the localhost:5000/myecho image:

podman pull --tls-verify=false localhost:5000/myecho2
podman run localhost:5000/myecho2
This container works!

Additional resources

buildah-push man page

11.11. PUSHING CONTAINERS TO THE DOCKER HUB

Use your Docker Hub credentials to push and pull images from the Docker Hub with the buildah
command.

Prerequisites

An image was built using instructions from Containerfile. For details, see section Building an
image from a Dockerfile with Buildah.

Procedure

1. Push the docker.io/library/myecho:latest to your Docker Hub. Replace username and
password with your Docker Hub credentials:

buildah push --creds username:password \
 docker.io/library/myecho:latest docker://testaccountXX/myecho:latest

Verification

Get and run the docker.io/testaccountXX/myecho:latest image:

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH

97

Using Podman tool:

podman run docker.io/testaccountXX/myecho:latest
This container works!

Using Buildah and Podman tools:

buildah from docker.io/testaccountXX/myecho:latest
myecho2-working-container-2
podman run myecho-working-container-2

Additional resources

buildah-push man page

11.12. REMOVING IMAGES WITH BUILDAH

Use the buildah rmi command to remove locally stored container images. You can remove an image by
its ID or name.

Procedure

1. List all images on your local system:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/johndoe/webserver latest dc5fcc610313 46 minutes ago 263 MB
docker.io/library/mynewecho latest fa2091a7d8b6 17 hours ago 234 MB
docker.io/library/myecho2 latest 4547d2c3e436 6 days ago 234 MB
localhost/myecho latest b28cd00741b3 6 days ago 234 MB
localhost/ubi-micro-httpd latest c6a7678c4139 12 days ago 152 MB
registry.access.redhat.com/ubi8/ubi latest 272209ff0ae5 3 weeks ago 234 MB

2. Remove the localhost/myecho image:

buildah rmi localhost/myecho

To remove multiple images:

buildah rmi docker.io/library/mynewecho docker.io/library/myecho2

To remove all images from your system:

buildah rmi -a

To remove images that have multiple names (tags) associated with them, add the -f option
to remove them:

buildah rmi -f localhost/ubi-micro-httpd

Verification

Red Hat Enterprise Linux 8 Building, running, and managing containers

98

Ensure that images were removed:

buildah images

Additional resources

buildah-rmi man page

11.13. REMOVING CONTAINERS WITH BUILDAH

Use the buildah rm command to remove containers. You can specify containers with the container ID or
name.

Prerequisites

At least one container has been stopped.

Procedure

1. List all containers:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
05387e29ab93 * c37e14066ac7 docker.io/library/myecho:latest myecho-working-
container

2. Remove the myecho-working-container container:

buildah rm myecho-working-container
05387e29ab93151cf52e9c85c573f3e8ab64af1592b1ff9315db8a10a77d7c22

Verification

Ensure that containers were removed:

buildah containers

Additional resources

buildah-rm man page

CHAPTER 11. BUILDING CONTAINER IMAGES WITH BUILDAH

99

CHAPTER 12. MONITORING CONTAINERS
This chapter focuses on useful Podman commands that allow you to manage a Podman environment,
including determining the health of the container, displaying system and pod information, and
monitoring Podman events.

12.1. PERFORMING A HEALTHCHECK ON A CONTAINER

The healthcheck allows you to determine the health or readiness of the process running inside the
container. A healthcheck consists of five basic components:

Command

Retries

Interval

Start-period

Timeout

The description of healthcheck components follows.

Command

Podman executes the command inside the target container and waits for the exit code.

The other four components are related to the scheduling of the healthcheck and they are optional.

Retries

Defines the number of consecutive failed healthchecks that need to occur before the container is
marked as "unhealthy". A successful healthcheck resets the retry counter.

Interval

Describes the time between running the healthcheck command. Note that small intervals cause your
system to spend a lot of time running healthchecks. The large intervals cause struggles with catching
time outs.

Start-period

Describes the time between when the container starts and when you want to ignore healthcheck
failures.

Timeout

Describes the period of time the healthcheck must complete before being considered unsuccessful.

Healthchecks run inside the container. Healthcheck only make sense if you know what is a health state of
the service and can differentiate between a successful and unsuccessful health check.

Procedure

1. Define a healthcheck:

$ sudo podman run -dt --name hc1 --health-cmd='curl http://localhost || exit 1' --health-
interval=0 quay.io/libpod/alpine_nginx:latest
D25ee6faaf6e5e12c09e734b1ac675385fe4d4e8b52504dd01a60e1b726e3edb

The --health-cmd option sets a healthcheck command for the container.

Red Hat Enterprise Linux 8 Building, running, and managing containers

100

The -health-interval=0 option with 0 value indicates that you want to run healthcheck
manually.

2. Run the healthcheck manually:

$ sudo podman healthcheck run hc1
Healthy

3. Optionally, you can check the exit status of last command:

$ echo $?
0

The "0" value means success.

Additional resources

man podman-run

Monitoring container vitality and availability with Podman article

12.2. DISPLAYING PODMAN SYSTEM INFORMATION

The podman system command allows you to manage the Podman systems. This section provides
information on how to display Podman system information.

Procedure

Display Podman system information:

To show Podman disk usage, enter:

$ podman system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 3 1 255MB 255MB (100%)
Containers 1 0 0B 0B (0%)
Local Volumes 0 0 0B 0B (0%)

To show detailed information on space usage, enter:

$ podman system df -v
Images space usage:

REPOSITORY TAG IMAGE ID CREATED SIZE SHARED
SIZE UNQUE SIZE CONTAINERS
docker.io/library/alpine latest e7d92cdc71fe 3 months ago 5.86MB 0B
5.86MB 0
registry.access.redhat.com/ubi8/ubi latest 8121a9f5303b 6 weeks ago 240MB 0B
240MB 1
quay.io/libpod/alpine_nginx latest 3ef70f7291f4 18 months ago 9.21MB 0B
9.21MB 0

Containers space usage:

CHAPTER 12. MONITORING CONTAINERS

101

CONTAINER ID IMAGE COMMAND LOCAL VOLUMES SIZE CREATED
STATUS NAMES
ff0167c6c271 8121 /bin/bash 0 0B 10 seconds ago exited playTest

Local Volumes space usage:

VOLUME NAME LINKS SIZE

To display information about the host, current storage stats, and build of Podman, enter:

$ podman system info
host:
 arch: amd64
 buildahVersion: 1.15.0
 cgroupVersion: v1
 conmon:
 package: conmon-2.0.18-1.module+el8.3.0+7084+c16098dd.x86_64
 path: /usr/bin/conmon
 version: 'conmon version 2.0.18, commit:
7fd3f71a218f8d3a7202e464252aeb1e942d17eb'
 cpus: 1
 distribution:
 distribution: '"rhel"'
 version: "8.3"
 eventLogger: file
 hostname: localhost.localdomain
 idMappings:
 gidmap:
 - container_id: 0
 host_id: 1000
 size: 1
 - container_id: 1
 host_id: 100000
 size: 65536
 uidmap:
 - container_id: 0
 host_id: 1000
 size: 1
 - container_id: 1
 host_id: 100000
 size: 65536
 kernel: 4.18.0-227.el8.x86_64
 linkmode: dynamic
 memFree: 69713920
 memTotal: 1376636928
 ociRuntime:
 name: runc
 package: runc-1.0.0-66.rc10.module+el8.3.0+7084+c16098dd.x86_64
 path: /usr/bin/runc
 version: 'runc version spec: 1.0.1-dev'
 os: linux
 remoteSocket:
 path: /run/user/1000/podman/podman.sock
 rootless: true
 slirp4netns:
 executable: /usr/bin/slirp4netns

Red Hat Enterprise Linux 8 Building, running, and managing containers

102

 package: slirp4netns-1.1.1-1.module+el8.3.0+7084+c16098dd.x86_64
 version: |-
 slirp4netns version 1.1.1
 commit: bbf27c5acd4356edb97fa639b4e15e0cd56a39d5
 libslirp: 4.3.0
 SLIRP_CONFIG_VERSION_MAX: 3
 swapFree: 1833693184
 swapTotal: 2147479552
 uptime: 145h 19m 14.55s (Approximately 6.04 days)
registries:
 search:
 - registry.access.redhat.com
 - registry.redhat.io
 - docker.io
store:
 configFile: /home/user/.config/containers/storage.conf
 containerStore:
 number: 1
 paused: 0
 running: 0
 stopped: 1
 graphDriverName: overlay
 graphOptions:
 overlay.mount_program:
 Executable: /usr/bin/fuse-overlayfs
 Package: fuse-overlayfs-1.1.1-1.module+el8.3.0+7121+472bc0cf.x86_64
 Version: |-
 fuse-overlayfs: version 1.1.0
 FUSE library version 3.2.1
 using FUSE kernel interface version 7.26
 graphRoot: /home/user/.local/share/containers/storage
 graphStatus:
 Backing Filesystem: xfs
 Native Overlay Diff: "false"
 Supports d_type: "true"
 Using metacopy: "false"
 imageStore:
 number: 15
 runRoot: /run/user/1000/containers
 volumePath: /home/user/.local/share/containers/storage/volumes
version:
 APIVersion: 1
 Built: 0
 BuiltTime: Thu Jan 1 01:00:00 1970
 GitCommit: ""
 GoVersion: go1.14.2
 OsArch: linux/amd64
 Version: 2.0.0

To remove all unused containers, images and volume data, enter:

$ podman system prune
WARNING! This will remove:
 - all stopped containers
 - all stopped pods

CHAPTER 12. MONITORING CONTAINERS

103

 - all dangling images
 - all build cache
Are you sure you want to continue? [y/N] y

The podman system prune command removes all unused containers (both dangling
and unreferenced), pods and optionally, volumes from local storage.

Use the --all option to delete all unused images. Unused images are dangling images
and any image that does not have any containers based on it.

Use the --volume option to prune volumes. By default, volumes are not removed to
prevent important data from being deleted if there is currently no container using the
volume.

Additional resources

man podman-system-df

man podman-system-info

man podman-system-prune

12.3. PODMAN EVENT TYPES

You can monitor events that occur in Podman. Several event types exist and each event type reports
different statuses.

The container event type reports the following statuses:

attach

checkpoint

cleanup

commit

create

exec

export

import

init

kill

mount

pause

prune

remove

Red Hat Enterprise Linux 8 Building, running, and managing containers

104

restart

restore

start

stop

sync

unmount

unpause

The pod event type reports the following statuses:

create

kill

pause

remove

start

stop

unpause

The image event type reports the following statuses:

prune

push

pull

save

remove

tag

untag

The system type reports the following statuses:

refresh

renumber

The volume type reports the following statuses:

create

prune

CHAPTER 12. MONITORING CONTAINERS

105

remove

Additional resources

man podman-events

12.4. MONITORING PODMAN EVENTS

You can monitor and print events that occur in Podman. Each event will include a timestamp, a type, a
status, name (if applicable), and image (if applicable).

Procedure

Show Podman events:

To show all Podman events, enter:

$ podman events
2020-05-14 10:33:42.312377447 -0600 CST container create 34503c192940
(image=registry.access.redhat.com/ubi8/ubi:latest, name=keen_colden)
2020-05-14 10:33:46.958768077 -0600 CST container init 34503c192940
(image=registry.access.redhat.com/ubi8/ubi:latest, name=keen_colden)
2020-05-14 10:33:46.973661968 -0600 CST container start 34503c192940
(image=registry.access.redhat.com/ubi8/ubi:latest, name=keen_colden)
2020-05-14 10:33:50.833761479 -0600 CST container stop 34503c192940
(image=registry.access.redhat.com/ubi8/ubi:latest, name=keen_colden)
2020-05-14 10:33:51.047104966 -0600 CST container cleanup 34503c192940
(image=registry.access.redhat.com/ubi8/ubi:latest, name=keen_colden)

To exit logging, press CTRL+c.

To show only Podman create events, enter:

$ podman events --filter event=create
2020-05-14 10:36:01.375685062 -0600 CST container create 20dc581f6fbf
(image=registry.access.redhat.com/ubi8/ubi:latest)
2019-03-02 10:36:08.561188337 -0600 CST container create 58e7e002344c
(image=registry.access.redhat.com/ubi8/ubi-minimal:latest)
2019-03-02 10:36:29.978806894 -0600 CST container create d81e30f1310f
(image=registry.access.redhat.com/ubi8/ubi-init:latest)

Additional resources

man podman-events

Red Hat Enterprise Linux 8 Building, running, and managing containers

106

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

13.1. PODMAN

The podman command (which stands for Pod Manager) lets you run containers as standalone entities,
without requiring that Kubernetes, the Docker runtime, or any other container runtime be involved. It is a
tool that can act as a replacement for the docker command, implementing the same command-line
syntax, while it adds even more container management features. The podman features include:

Based on the Docker interface: Because podman syntax mirrors the docker command,
transitioning to podman should be easy for those familiar with docker.

Managing containers and images: Both Docker- and OCI-compatible container images can be
used with podman to:

Run, stop and restart containers

Create and manage container images (push, commit, configure, build, and so on)

Managing pods: Besides running individual containers, podman can run a set of containers
grouped in a pod. A pod is the smallest container unit that Kubernetes manages.

Working with no runtime: No runtime environment is used by podman to work with containers.

Here are a few implementation features of Podman you should know about:

Podman, Buildah, and the CRI-O container engine all use the same back-end store directory,
/var/lib/containers, instead of using the Docker storage location (/var/lib/docker), by default.

Although Podman, Buildah, and CRI-O share the same storage directory, they cannot interact
with each other’s containers. Those tools can share images, however. Eventually those features
will be able to share containers.

The podman command, like the docker command, can build container images from a
Dockerfile.

The podman command can be a useful troubleshooting tool when the CRI-O service is
unavailable.

Options to the docker command that are not supported by podman include network, node,
plugin (podman does not support plugins), rename (use rm and create to rename containers
with podman), secret, service, stack, and swarm (podman does not support Docker Swarm).
The container and image options are used to run subcommands that are used directly in
podman.

To interact programmatically with podman, you can use the Podman v2.0 RESTful API, it works
in both a rootful and a rootless environment. For more information, see chapter Using the
container tools API.

13.1.1. Using podman commands

If you are used to using the docker command to work with containers, you will find most of the features
and options match those of podman. Table 1 shows a list of commands you can use with podman (type
podman -h to see this list):

Table 13.1. Commands supported by podman

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

107

podman command Description podman command Description

attach Attach to a running
container

commit Create new image from
changed container

build Build an image using
Dockerfile instructions

create Create, but do not start,
a container

diff Inspect changes on
container’s filesystems

exec Run a process in a
running container

export Export container’s
filesystem contents as a
tar archive

help, h Shows a list of
commands or help for
one command

history Show history of a
specified image

images List images in local
storage

import Import a tarball to
create a filesystem
image

info Display system
information

inspect Display the
configuration of a
container or image

kill Send a specific signal to
one or more running
containers

load Load an image from an
archive

login Login to a container
registry

logout Logout of a container
registry

logs Fetch the logs of a
container

mount Mount a working
container’s root
filesystem

pause Pauses all the processes
in one or more
containers

ps List containers port List port mappings or a
specific mapping for the
container

pull Pull an image from a
registry

push Push an image to a
specified destination

restart Restart one or more
containers

rm Remove one or more
containers from host.
Add -f if running.

rmi removes one or more
images from local
storage

run run a command in a new
container

Red Hat Enterprise Linux 8 Building, running, and managing containers

108

save Save image to an
archive

search search registry for image

start Start one or more
containers

stats Display percentage of
CPU, memory, network
I/O, block I/O and PIDs
for one or more
containers

stop Stop one or more
containers

tag Add an additional name
to a local image

top Display the running
processes of a container

umount, unmount Unmount a working
container’s root
filesystem

unpause Unpause the processes
in one or more
containers

version Display podman version
information

wait Block on one or more
containers

13.1.2. Using the crun container runtime

crun is a fast and low-memory footprint OCI Container Runtime written in C. The crun binary is up to 50
times smaller and and up to twice faster than runc binary. Using crun, you can also set a minimal number
of processes when running your container. The crun runtime also supports OCI hooks.

Additional features of crun include:

Sharing files by group for rootless containers

Controlling the stdout and stderr of OCI hooks

Running older versions of systemd on cgroup v2

A C library that is used by other programs

Extensibility

Portability

13.1.3. Temporarily using crun as the container runtime

You can use the podman run command with the --runtime option to change the container runtime.

Prerequisites

The Podman tool is installed.

yum module install -y container-tools

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

109

Procedure

1. Pull the registry.access.redhat.com/ubi8/ubi container image:

$ podman pull registry.access.redhat.com/ubi8/ubi

2. Change the container runtime using the --runtime option:

$ podman run --name=myubi -dt --runtime=crun ubi8 bash
e4654eb4df12ac031f1d0f2657dc4ae6ff8eb0085bf114623b66cc664072e69b

3. Optional: List all images:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
e4654eb4df12 registry.access.redhat.com/ubi8:latest bash 4 seconds ago Up 4 seconds
ago myubi

Verification steps

Ensure that the OCI runtime is set to crun in the myubi container:

$ podman inspect myubi --format "{{.OCIRuntime}}"
crun

Additional resources

An introduction to crun, a fast and low-memory footprint container runtime

Extending the runtime functionality

13.1.4. Permanently using crun as the container runtime

You can set the container runtime and its options in the containers.conf configuration file.

Procedure

1. Change the runtime from runc to crun in the containers.conf file:

vim /etc/containers/containers.conf
[engine]
runtime = "crun"

2. Run the container named myubi:

podman run --name=myubi -dt ubi8 bash

Verification steps

Ensure that the OCI runtime is set to crun in the myubi container:

Red Hat Enterprise Linux 8 Building, running, and managing containers

110

podman inspect myubi --format "{{.OCIRuntime}}"
crun

Additional resources

An introduction to crun, a fast and low-memory footprint container runtime

Extending the runtime functionality

man containers.conf

13.1.5. Creating SELinux policies for containers

To generate SELinux policies for containers, use the UDICA tool. For more information, see Introduction
to the udica SELinux policy generator.

13.1.6. Using podman with MPI

You can use Podman with Open MPI (Message Passing Interface) to run containers in a High
Performance Computing (HPC) environment.

The example is based on the ring.c program taken from Open MPI. In this example, a value is passed
around by all processes in a ring-like fashion. Each time the message passes rank 0, the value is
decremented. When each process receives the 0 message, it passes it on to the next process and then
quits. By passing the 0 first, every process gets the 0 message and can quit normally.

Procedure

1. Install Open MPI:

$ sudo yum install openmpi

2. To activate the environment modules, type:

$. /etc/profile.d/modules.sh

3. Load the mpi/openmpi-x86_64 module:

$ module load mpi/openmpi-x86_64

Optionally, to automatically load mpi/openmpi-x86_64 module, add this line to the .bashrc file:

$ echo "module load mpi/openmpi-x86_64" >> .bashrc

4. To combine mpirun and podman, create a container with the following definition:

$ cat Containerfile
FROM registry.access.redhat.com/ubi8/ubi

RUN yum -y install openmpi-devel wget && \
 yum clean all

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

111

RUN wget https://raw.githubusercontent.com/open-mpi/ompi/master/test/simple/ring.c && \
 /usr/lib64/openmpi/bin/mpicc ring.c -o /home/ring && \
 rm -f ring.c

5. Build the container:

$ podman build --tag=mpi-ring .

6. Start the container. On a system with 4 CPUs this command starts 4 containers:

$ mpirun \
 --mca orte_tmpdir_base /tmp/podman-mpirun \
 podman run --env-host \
 -v /tmp/podman-mpirun:/tmp/podman-mpirun \
 --userns=keep-id \
 --net=host --pid=host --ipc=host \
 mpi-ring /home/ring
Rank 2 has cleared MPI_Init
Rank 2 has completed ring
Rank 2 has completed MPI_Barrier
Rank 3 has cleared MPI_Init
Rank 3 has completed ring
Rank 3 has completed MPI_Barrier
Rank 1 has cleared MPI_Init
Rank 1 has completed ring
Rank 1 has completed MPI_Barrier
Rank 0 has cleared MPI_Init
Rank 0 has completed ring
Rank 0 has completed MPI_Barrier

As a result, mpirun starts up 4 Podman containers and each container is running one instance of
the ring binary. All 4 processes are communicating over MPI with each other.

The following mpirun options are used to start the container:

--mca orte_tmpdir_base /tmp/podman-mpirun line tells Open MPI to create all its
temporary files in /tmp/podman-mpirun and not in /tmp. If using more than one node this
directory will be named differently on other nodes. This requires mounting the complete
/tmp directory into the container which is more complicated.

The mpirun command specifies the command to start, the podman command. The following
podman options are used to start the container:

run command runs a container.

--env-host option copies all environment variables from the host into the container.

-v /tmp/podman-mpirun:/tmp/podman-mpirun line tells Podman to mount the directory
where Open MPI creates its temporary directories and files to be available in the container.

--userns=keep-id line ensures the user ID mapping inside and outside the container.

--net=host --pid=host --ipc=host line sets the same network, PID and IPC namespaces.

mpi-ring is the name of the container.

Red Hat Enterprise Linux 8 Building, running, and managing containers

112

/home/ring is the MPI program in the container.

For more information, see the article Podman in HPC environments by Adrian Reber.

13.1.7. Creating and restoring container checkpoints

Checkpoint/Restore In Userspace (CRIU) is a software that enables you to set a checkpoint on a running
container or an individual application and store its state to disk. You can use data saved to restore the
container after a reboot at the same point in time it was checkpointed.

13.1.7.1. Creating and restoring a container checkpoint locally

This example is based on a Python based web server which returns a single integer which is incremented
after each request.

Procedure

1. Create a Python based server:

cat counter.py
#!/usr/bin/python3

import http.server

counter = 0

class handler(http.server.BaseHTTPRequestHandler):
 def do_GET(s):
 global counter
 s.send_response(200)
 s.send_header('Content-type', 'text/html')
 s.end_headers()
 s.wfile.write(b'%d\n' % counter)
 counter += 1

server = http.server.HTTPServer(('', 8088), handler)
server.serve_forever()

2. Create a container with the following definition:

cat Containerfile
FROM registry.access.redhat.com/ubi8/ubi

COPY counter.py /home/counter.py

RUN useradd -ms /bin/bash counter

RUN yum -y install python3 && chmod 755 /home/counter.py

USER counter
ENTRYPOINT /home/counter.py

The container is based on the Universal Base Image (UBI 8) and uses a Python based server.

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

113

3. Build the container:

podman build . --tag counter

Files counter.py and Containerfile are the input for the container build process (podman
build). The built image is stored locally and tagged with the tag counter.

4. Start the container as root:

podman run --name criu-test --detach counter

5. To list all running containers, enter:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
e4f82fd84d48 localhost/counter:latest 5 seconds ago Up 4 seconds ago criu-test

6. Display IP address of the container:

podman inspect criu-test --format "{{.NetworkSettings.IPAddress}}"
10.88.0.247

7. Send requests to the container:

curl 10.88.0.247:8080
0
curl 10.88.0.247:8080
1

8. Create a checkpoint for the container:

podman container checkpoint criu-test

9. Reboot the system.

10. Restore the container:

podman container restore --keep criu-test

11. Send requests to the container:

curl 10.88.0.247:8080
2
curl 10.88.0.247:8080
3
curl 10.88.0.247:8080
4

The result now does not start at 0 again, but continues at the previous value.

This way you can easily save the complete container state through a reboot.

For more information, see the article Adding checkpoint/restore support to Podman by Adrian Reber.

Red Hat Enterprise Linux 8 Building, running, and managing containers

114

13.1.7.2. Reducing startup time using container restore

You can use container migration to reduce startup time of containers which require a certain time to
initialize. Using a checkpoint, you can restore the container multiple times on the same host or on
different hosts. This example is based on the container from the Creating and restoring a container
checkpoint locally section.

Procedure

1. Create a checkpoint of the container, and export the checkpoint image to a tar.gz file:

podman container checkpoint criu-test --export /tmp/chkpt.tar.gz

2. Restore the container from the tar.gz file:

podman container restore --import /tmp/chkpt.tar.gz --name counter1
podman container restore --import /tmp/chkpt.tar.gz --name counter2
podman container restore --import /tmp/chkpt.tar.gz --name counter3

The --name (-n) option specifies a new name for containers restored from the exported
checkpoint.

3. Display ID and name of each container:

podman ps -a --format "{{.ID}} {{.Names}}"
a8b2e50d463c counter3
faabc5c27362 counter2
2ce648af11e5 counter1

4. Display IP address of each container:

#� podman inspect counter1 --format "{{.NetworkSettings.IPAddress}}"
10.88.0.248

#� podman inspect counter2 --format "{{.NetworkSettings.IPAddress}}"
10.88.0.249

#� podman inspect counter3 --format "{{.NetworkSettings.IPAddress}}"
10.88.0.250

5. Send requests to each container:

#� curl 10.88.0.248:8080
4
#� curl 10.88.0.249:8080
4
#� curl 10.88.0.250:8080
4

Note, that the result is 4 in all cases, because you are working with different containers restored
from the same checkpoint.

Using this approach, you can quickly start up stateful replicas of the initially checkpointed container.

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

115

For more information, see the article Container migration with Podman on RHEL by Adrian Reber.

13.1.7.3. Migrating containers among systems

This procedure shows the migration of running containers from one system to another, without losing
the state of the applications running in the container. This example is based on the container from the
Creating and restoring a container checkpoint locally section tagged with counter.

Prerequisites

The following steps are not necessary if the container is pushed to a registry as Podman will
automatically download the container from a registry if it is not available locally. This example does not
use a registry, you have to export previously built and tagged container (see Creating and restoring a
container checkpoint locally section) locally and import the container on the destination system of this
migration.

Export previously built container:

podman save --output counter.tar counter

Copy exported container image to the destination system (other_host):

scp counter.tar other_host:

Import exported container on the destination system:

ssh other_host podman load --input counter.tar

Now the destination system of this container migration has the same container image stored in its local
container storage.

Procedure

1. Start the container as root:

podman run --name criu-test --detach counter

2. Display IP address of the container:

podman inspect criu-test --format "{{.NetworkSettings.IPAddress}}"
10.88.0.247

3. Send requests to the container:

curl 10.88.0.247:8080
0
curl 10.88.0.247:8080
1

4. Create a checkpoint of the container, and export the checkpoint image to a tar.gz file:

podman container checkpoint criu-test --export /tmp/chkpt.tar.gz

Red Hat Enterprise Linux 8 Building, running, and managing containers

116

5. Copy the checkpoint archive to the destination host:

scp /tmp/chkpt.tar.gz other_host:/tmp/

6. Restore the checkpoint on the destination host (other_host):

podman container restore --import /tmp/chkpt.tar.gz

7. Send a request to the container on the destination host (other_host):

curl 10.88.0.247:8080
2

As a result, the stateful container has been migrated from one system to another without losing its state.

For more information, see the article Container migration with Podman on RHEL by Adrian Reber.

13.2. RUNC

The "runC" container runtime is a lightweight, portable implementation of the Open Container Initiative
(OCI) container runtime specification. The runC unites a lot of the low-level features that make running
containers possible. It shares a lot of low-level code with Docker but it is not dependent on any of the
components of the Docker platform.

runc supports Linux namespaces, live migration, and has portable performance profiles. It also provides
full support for Linux security features such as SELinux, control groups (cgroups), seccomp, and others.
You can build and run images with runc, or you can run OCI-compatible images with runc.

13.2.1. Running containers with runc

With runc, containers are configured using bundles. A bundle for a container is a directory that includes a
specification file named config.json and a root filesystem. The root filesystem contains the contents of
the container.

To create a bundle, run:

$ runc spec

This command creates a config.json file that only contains a bare-bones structure that you will need to
edit. Most importantly, you will need to change the args parameter to identify the executable to run. By
default, args is set to sh.

 "args": [
 "sh"
],

As an example, you can download the Red Hat Enterprise Linux base image (ubi8/ubi) using podman
then export it, create a new bundle for it with runc, and edit the config.json file to point to that image.
You can then create the container image and run an instance of that image with runc. Use the following
commands:

podman pull registry.redhat.io/ubi8/ubi
podman export $(podman create registry.redhat.io/ubi8/ubi) > rhel.tar

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

117

mkdir -p rhel-runc/rootfs
tar -C rhel-runc/rootfs -xf rhel.tar
runc spec -b rhel-runc
vi rhel-runc/config.json Change any setting you like
runc create -b rhel-runc/ rhel-container
runc start rhel-container
sh-4.2#

In this example, the name of the container instance is rhel-container. Running that container, by default,
starts a shell, so you can begin looking around and running commands from inside that container. Type
exit when you are done.

The name of a container instance must be unique on the host. To start a new instance of a container:

runc start <container_name>

You can provide the bundle directory using the -b option. By default, the value for the bundle is the
current directory.

You will need root privileges to start containers with runc. To see all commands available to runc and
their usage, run runc --help.

13.3. SKOPEO

With the skopeo command, you can work with container images from registries without using the
docker daemon or the docker command. Registries can include the Docker Registry, your own local
registries, Red Hat Quay or OpenShift registries. Activities you can do with skopeo include:

inspect: The output of a skopeo inspect command is similar to what you see from a docker
inspect command: low-level information about the container image. That output can be in json
format (default) or raw format (using the --raw option).

copy: With skopeo copy you can copy a container image from a registry to another registry or
to a local directory.

layers: The skopeo layers command lets you download the layers associated with images so
that they are stored as tarballs and associated manifest files in a local directory.

Like the buildah command and other tools that rely on the containers/image library, the skopeo
command can work with images from container storage areas other than those associated with Docker.
Available transports to other types of container storage include: containers-storage (for images stored
by buildah and CRI-O), ostree (for atomic and system containers), oci (for content stored in an OCI-
compliant directory), and others. See the skopeo man page for details.

To try out skopeo, you could set up a local registry, then run the commands that follow to inspect, copy,
and download image layers. If you want to follow along with the examples, start by doing the following:

Install a local registry (such as Red Hat Quay. Container registry software available in the
docker-distribution package for RHEL 7, is not available for RHEL 8.

Pull the latest RHEL image to your local system (podman pull ubi8/ubi).

Retag the RHEL image and push it to your local registry as follows:

podman tag ubi8/ubi localhost/myubi8
podman push localhost/myubi8

Red Hat Enterprise Linux 8 Building, running, and managing containers

118

The rest of this section describes how to inspect, copy and get layers from the RHEL image.

NOTE

The skopeo tool by default requires a TLS connection. It fails when trying to use an
unencrypted connection. To override the default and use an http registry, prepend http:
to the <registry>/<image> string.

13.3.1. Inspecting container images with skopeo

When you inspect a container image from a registry, you need to identify the container format (such as
docker), the location of the registry (such as docker.io or localhost), and the repository/image (such as
ubi8/ubi).

The following example inspects the mariadb container image from the Docker Registry:

skopeo inspect docker://docker.io/library/mariadb
{
 "Name": "docker.io/library/mariadb",
 "Tag": "latest",
 "Digest": "sha256:d3f56b143b62690b400ef42e876e628eb5e488d2d0d2a35d6438a4aa841d89c4",
 "RepoTags": [
 "10.0.15",
 "10.0.16",
 "10.0.17",
 "10.0.19",
...
 "Created": "2018-06-10T01:53:48.812217692Z",
 "DockerVersion": "1.10.3",
 "Labels": {},
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
...

Assuming you pushed a container image tagged localhost/myubi8 to a container registry running on
your local system, the following command inspects that image:

skopeo inspect docker://localhost/myubi8
{
 "Name": "localhost/myubi8",
 "Tag": "latest",
 "Digest": "sha256:4e09c308a9ddf56c0ff6e321d135136eb04152456f73786a16166ce7cba7c904",
 "RepoTags": [
 "latest"
],
 "Created": "2018-06-16T17:27:13Z",
 "DockerVersion": "1.7.0",
 "Labels": {
 "Architecture": "x86_64",
 "Authoritative_Registry": "registry.access.redhat.com",
 "BZComponent": "rhel-server-docker",
 "Build_Host": "rcm-img01.build.eng.bos.redhat.com",
 "Name": "myubi8",

CHAPTER 13. USING THE CONTAINER-TOOLS CLI

119

 "Release": "75",
 "Vendor": "Red Hat, Inc.",
 "Version": "8.0"
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf"
]
}

13.3.2. Copying container images with skopeo

This command copies the myubi8 container image from a local registry into a directory on the local
system:

skopeo copy docker://localhost/myubi8 dir:/root/test/
INFO[0000] Downloading
myubi8/blobs/sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf
ls /root/test
16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf.tar manifest.json

The result of the skopeo copy command is a tarball (16d*.tar) and a manifest.json file representing the
image being copied to the directory you identified. If there were multiple layers, there would be multiple
tarballs. The skopeo copy command can also copy images to another registry. If you need to provide a
signature to write to the destination registry, you can do that by adding a --sign-by= option to the
command line, followed by the required key-id.

13.3.3. Getting image layers with skopeo

The skopeo layers command is similar to skopeo copy, with the difference being that the copy option
can copy an image to another registry or to a local directory, while the layers option just drops the layers
(tarballs and manifest.json file) in the current directory. For example

skopeo layers docker://localhost/myubi8
INFO[0000] Downloading
myubi8/blobs/sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf
find .
./layers-myubi8-latest-698503105
./layers-myubi-latest-698503105/manifest.json
./layers-myubi8-latest-
698503105/16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf.tar

As you can see from this example, a new directory is created (layers-myubi8-latest-698503105) and, in
this case, a single layer tarball and a manifest.json file are copied to that directory.

Red Hat Enterprise Linux 8 Building, running, and managing containers

120

CHAPTER 14. USING THE CONTAINER-TOOLS API
The new REST based Podman 2.0 API replaces the old remote API for Podman that used the varlink
library. The new API works in both a rootful and a rootless environment.

The Podman v2.0 RESTful API consists of the Libpod API providing support for Podman, and Docker-
compatible API. With this new REST API, you can call Podman from platforms such as cURL, Postman,
Google’s Advanced REST client, and many others.

14.1. ENABLING THE PODMAN API USING SYSTEMD IN ROOT MODE

This procedure shows how to do the following:

1. Use systemd to activate the Podman API socket.

2. Use a Podman client to perform basic commands.

Prerequisities

The podman-remote package is installed.

yum install podman-remote

Procedure

1. Configure the systemd unit file for Podman socket:

cat /usr/lib/systemd/system/podman.socket

[Unit]
Description=Podman API Socket
Documentation=man:podman-api(1)

[Socket]
ListenStream=%t/podman/podman.sock
SocketMode=0660

[Install]
WantedBy=sockets.target

2. Reload the systemd manager configuration:

systemctl daemon-reload

3. Start the service immediately:

systemctl enable --now podman.socket

4. To enable the link to var/lib/docker.sock using the docker-podman package:

yum install podman-docker

CHAPTER 14. USING THE CONTAINER-TOOLS API

121

Verification steps

1. Display system information of Podman:

podman-remote info

2. Verify the link:

ls -al /var/run/docker.sock
lrwxrwxrwx. 1 root root 23 Nov 4 10:19 /var/run/docker.sock -> /run/podman/podman.sock

Additional resources

Podman v2.0 RESTful API - upstream documentation

A First Look At Podman 2.0 API - article

Sneak peek: Podman’s new REST API - article

14.2. ENABLING THE PODMAN API USING SYSTEMD IN ROOTLESS
MODE

This procedure shows how to use systemd to activate the Podman API socket and podman API service.

Prerequisites

The podman-remote package is installed.

yum install podman-remote

Procedure

1. Enable and start the service immediately:

$ systemctl --user enable --now podman.socket

2. Optional. To enable programs using Docker to interact with the rootless Podman socket:

$ export DOCKER_HOST=unix:///run/user/<uid>/podman//podman.sock

Verification steps

1. Check the status of the socket:

$ systemctl --user status podman.socket
● podman.socket - Podman API Socket
 Loaded: loaded (/usr/lib/systemd/user/podman.socket; enabled; vendor preset: enabled)
Active: active (listening) since Mon 2021-08-23 10:37:25 CEST; 9min ago
Docs: man:podman-system-service(1)
Listen: /run/user/1000/podman/podman.sock (Stream)
CGroup: /user.slice/user-1000.slice/user@1000.service/podman.socket

The podman.socket is active and is listening at /run/user/<uid>/podman.podman.sock, where

Red Hat Enterprise Linux 8 Building, running, and managing containers

122

The podman.socket is active and is listening at /run/user/<uid>/podman.podman.sock, where
<uid> is the user’s ID.

2. Display system information of Podman:

$ podman-remote info

Additional resources

Podman v2.0 RESTful API - upstream documentation

A First Look At Podman 2.0 API - article

Sneak peek: Podman’s new REST API - article

Exploring Podman RESTful API using Python and Bash - article

14.3. RUNNING THE PODMAN API MANUALLY

This procedure describes how to run the Podman API. This is useful for debugging API calls, especially
when using the Docker compatibility layer.

Prerequisities

The podman-remote package is installed.

yum install podman-remote

Procedure

1. Run the service for the REST API:

podman system service -t 0 --log-level=debug

The value of 0 means no timeout. The default endpoint for a rootful service is
unix:/run/podman/podman.sock.

The --log-level <level> option sets the logging level. The standard logging levels are
debug, info, warn, error, fatal, and panic.

2. In another terminal, display system information of Podman. The podman-remote command,
unlike the regular podman command, communicates through the Podman socket:

podman-remote info

3. To troubleshoot the Podman API and display request and responses, use the curl comman. To
get the information about the Podman installation on the Linux server in JSON format:

curl -s --unix-socket /run/podman/podman.sock http://d/v1.0.0/libpod/info | jq
 {
 "host": {
 "arch": "amd64",
 "buildahVersion": "1.15.0",
 "cgroupVersion": "v1",

CHAPTER 14. USING THE CONTAINER-TOOLS API

123

 "conmon": {
 "package": "conmon-2.0.18-1.module+el8.3.0+7084+c16098dd.x86_64",
 "path": "/usr/bin/conmon",
 "version": "conmon version 2.0.18, commit:
7fd3f71a218f8d3a7202e464252aeb1e942d17eb"
 },
 …
 "version": {
 "APIVersion": 1,
 "Version": "2.0.0",
 "GoVersion": "go1.14.2",
 "GitCommit": "",
 "BuiltTime": "Thu Jan 1 01:00:00 1970",
 "Built": 0,
 "OsArch": "linux/amd64"
 }
}

A jq utility is a command-line JSON processor.

4. Pull the registry.access.redhat.com/ubi8/ubi container image:

curl -XPOST --unix-socket /run/podman/podman.sock -v 'http://d/v1.0.0/images/create?
fromImage=registry.access.redhat.com%2Fubi8%2Fubi'
* Trying /run/podman/podman.sock...
* Connected to d (/run/podman/podman.sock) port 80 (#0)
> POST /v1.0.0/images/create?fromImage=registry.access.redhat.com%2Fubi8%2Fubi
HTTP/1.1
> Host: d
> User-Agent: curl/7.61.1
> Accept: /
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Tue, 20 Oct 2020 13:58:37 GMT
< Content-Length: 231
<
{"status":"pulling image () from registry.access.redhat.com/ubi8/ubi:latest,
registry.redhat.io/ubi8/ubi:latest","error":"","progress":"","progressDetail":
{},"id":"ecbc6f53bba0d1923ca9e92b3f747da8353a070fccbae93625bd8b47dbee772e"}
* Connection #0 to host d left intact

5. Display the pulled image:

curl --unix-socket /run/podman/podman.sock -v 'http://d/v1.0.0/libpod/images/json' | jq
* Trying /run/podman/podman.sock...
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Connected to d
(/run/podman/podman.sock) port 80 (0) > GET /v1.0.0/libpod/images/json HTTP/1.1 > Host: d
> User-Agent: curl/7.61.1 > Accept: / > < HTTP/1.1 200 OK < Content-Type: application/json
< Date: Tue, 20 Oct 2020 13:59:55 GMT < Transfer-Encoding: chunked < { [12498 bytes
data] 100 12485 0 12485 0 0 2032k 0 --:--:-- --:--:-- --:--:-- 2438k * Connection #0 to host d
left intact [{ "Id":
"ecbc6f53bba0d1923ca9e92b3f747da8353a070fccbae93625bd8b47dbee772e",
"RepoTags": ["registry.access.redhat.com/ubi8/ubi:latest", "registry.redhat.io/ubi8/ubi:latest"

Red Hat Enterprise Linux 8 Building, running, and managing containers

124

], "Created": "2020-09-01T19:44:12.470032Z", "Size": 210838671, "Labels": { "architecture":
"x86_64", "build-date": "2020-09-01T19:43:46.041620", "com.redhat.build-host": "cpt-
1008.osbs.prod.upshift.rdu2.redhat.com", ... "maintainer": "Red Hat, Inc.", "name": "ubi8", ...
"summary": "Provides the latest release of Red Hat Universal Base Image 8.", "url":
"https://access.redhat.com/containers//registry.access.redhat.com/ubi8/images/8.2-347",
 ...
 },
 "Names": [
 "registry.access.redhat.com/ubi8/ubi:latest",
 "registry.redhat.io/ubi8/ubi:latest"
],
 ...
]
 }
]

Additional resources

Podman v2.0 RESTful API - upstream documentation

Sneak peek: Podman’s new REST API - article

Exploring Podman RESTful API using Python and Bash - article

podman-system-service man page

CHAPTER 14. USING THE CONTAINER-TOOLS API

125

CHAPTER 15. ADDITIONAL RESOURCES
Buildah - a tool for building OCI container images

Podman - a tool for running and managing containers

Skopeo - a tool for copying and inspecting container images

Red Hat Enterprise Linux 8 Building, running, and managing containers

126

